2022-07-30 14:46:04 -03:00

86 lines
3.2 KiB
HTML

<html>
<title>USM Renderer</title>
<style type="text/css">
TABLE.ba { max-width: 678; text-align: center; padding-bottom: 15; padding-top: 5}
TABLE.inline { padding-right: 300; clear: left}
TD.text_table {padding-left: 2; padding-right: 2; border-width: 1}
H2 {clear: left}
P {max-width: none; padding-right: 300; clear: left}
BLOCKQUOTE {padding-right: 400 }
LI {max-width: 640; clear: left}
P.footer {max-width: none; width: auto; padding-left: 0}
P.header {max-width: none; width: auto; padding-left: 0}
HR.main {max-width: 640; clear: left; padding-left: 0; margin-left: 0}
HR.footer {clear: both}
</style>
</head><body>
<table align=right valign=top width=160>
<td valign=top height=600 width=160>
<a href="http://auricle.dyndns.org/ALE/">
<big>ALE</big>
<br>
Image Processing Software
<br>
<br>
<small>Deblurring, Anti-aliasing, and Superresolution.</small></a>
<br><br>
<big>
Local Operation
</big>
<hr>
localhost<br>
5393119533<br>
</table>
<p><b>[ <a href="../">Up</a> <!-- | <a href="../../ba/big_about.html">Examples</a> --> ]</b></p>
<h1>USM Renderer</h1>
<p>The Unsharp Mask Renderer is a built-in post-processing step based on the
unsharp mask technique, which has been used to enhance high frequencies since
the days of photographic plate processing (see, for example, <a
href="http://www.scenic-route.com/tutorial/psp/tutor/unsharp/Unsharp.htm">this
page</a>). This renderer acts after all other rendering steps have completed,
except for Irani-Peleg rendering, which occurs afterward.
<h2>Properties</h2>
<p>Given a sequence of images that satisfy all predicates for merging (or
drizzling) except point sampling; given a known linear PSF; and given only
translations between frames, the result of merging (or drizzling) will be an
acceptable approximation of <b>T</b> convolved with the PSF. This does not
imply that deconvolution of this result will be an acceptable approximation of
<b>T</b>, however, since frequencies with low response may be reconstructed
with poor fidelity due to reduced precision. We use the low-response
approximation to ignore these frequencies. Assuming the USM approximation, the
remaining frequencies are reconstructed to form an acceptable approximation of
<b>T</b>. (Since this doesn't really constitute a proof, the results should be
considered unreliable.)
<p>
<small>
<!--
<sup>1</sup>Ernst Lippe. refocus: A Gimp plug-in for sharpening images. <a href="http://refocus.sourceforge.net/doc.html">http://refocus.sourceforge.net/doc.html</a><br>
<sup>2</sup>E.g. this approach was used in:
<br>Michal Irani and Shmuel Peleg. "Improving Resolution by Image Registration". <i>Graphical
Models and Image Processing.</i> Academic Press, May 1991. <a href="http://www.wisdom.weizmann.ac.il/~irani/abstracts/superResolution.html">http://www.wisdom.weizmann.ac.il/~irani/abstracts/superResolution.html</a> -->
</small>
<!--
<h2>Examples</h2>
<p><a href="../../ba/big_about.html">Examples</a> of post-enhancement are available.
-->
<hr>
<i>Copyright 2002, 2003, 2004 <a href="mailto:dhilvert@auricle.dyndns.org">David Hilvert</a></i>
<p>Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice is preserved.
</body>
</html>