ale/d3/scene.h
2022-07-30 14:46:04 -03:00

4934 lines
111 KiB
C++

// Copyright 2003, 2004, 2005, 2006 David Hilvert <dhilvert@auricle.dyndns.org>,
// <dhilvert@ugcs.caltech.edu>
/* This file is part of the Anti-Lamenessing Engine.
The Anti-Lamenessing Engine is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
The Anti-Lamenessing Engine is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the Anti-Lamenessing Engine; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* d3/scene.h: Representation of a 3D scene.
*/
#ifndef __scene_h__
#define __scene_h__
#include "point.h"
/*
* View angle multiplier.
*
* Setting this to a value larger than one can be useful for debugging.
*/
#define VIEW_ANGLE_MULTIPLIER 1
class scene {
/*
* Clipping planes
*/
static ale_pos front_clip;
static ale_pos rear_clip;
/*
* Decimation exponents for geometry
*/
static int primary_decimation_upper;
static int input_decimation_lower;
static int output_decimation_preferred;
/*
* Output clipping
*/
static int output_clip;
/*
* Model files
*/
static const char *load_model_name;
static const char *save_model_name;
/*
* Occupancy attenuation
*/
static double occ_att;
/*
* Normalization of output by weight
*/
static int normalize_weights;
/*
* Filtering data
*/
static int use_filter;
static const char *d3chain_type;
/*
* Falloff exponent
*/
static ale_real falloff_exponent;
/*
* Third-camera error multiplier
*/
static double tc_multiplier;
/*
* Occupancy update iterations
*/
static unsigned int ou_iterations;
/*
* Pairwise ambiguity
*/
static unsigned int pairwise_ambiguity;
/*
* Pairwise comparisons
*/
static const char *pairwise_comparisons;
/*
* 3D Post-exclusion
*/
static int d3px_count;
static double *d3px_parameters;
/*
* Nearness threshold
*/
static const ale_real nearness;
/*
* Encounter threshold for defined pixels.
*/
static double encounter_threshold;
/*
* Median calculation radii.
*/
static double depth_median_radius;
static double diff_median_radius;
/*
* Flag for subspace traversal.
*/
static int subspace_traverse;
/*
* Structure to hold input frame information at levels of
* detail between full detail and full decimation.
*/
class lod_image {
unsigned int f;
unsigned int entries;
std::vector<const d2::image *> im;
std::vector<pt> transformation;
public:
/*
* Constructor
*/
lod_image(unsigned int _f) {
pt _pt;
f = _f;
im.push_back(d2::image_rw::copy(f, "3D reference image"));
assert(im.back());
entries = 1;
_pt = d3::align::projective(f);
_pt.scale(1 / _pt.scale_2d());
transformation.push_back(_pt);
while (im.back()->height() > 4
&& im.back()->width() > 4) {
im.push_back(im.back()->scale_by_half("3D, reduced LOD"));
assert(im.back());
_pt.scale(1 / _pt.scale_2d() / pow((ale_pos) 2, entries));
transformation.push_back(_pt);
entries += 1;
}
}
/*
* Get the number of scales
*/
unsigned int count() {
return entries;
}
/*
* Get an image.
*/
const d2::image *get_image(unsigned int i) {
assert(i < entries);
return im[i];
}
int in_bounds(d2::point p) {
return im[0]->in_bounds(p);
}
/*
* Get a 'trilinear' color. We currently don't do interpolation
* between levels of detail; hence, it's discontinuous in tl_coord.
*/
d2::pixel get_tl(d2::point p, ale_pos tl_coord) {
assert(in_bounds(p));
tl_coord = round(tl_coord);
if (tl_coord >= entries)
tl_coord = entries;
if (tl_coord < 0)
tl_coord = 0;
p = p / (ale_pos) pow(2, tl_coord);
unsigned int itlc = (unsigned int) tl_coord;
if (p[0] > im[itlc]->height() - 1)
p[0] = im[itlc]->height() - 1;
if (p[1] > im[itlc]->width() - 1)
p[1] = im[itlc]->width() - 1;
assert(p[0] >= 0);
assert(p[1] >= 0);
return im[itlc]->get_bl(p);
}
d2::pixel get_max_diff(d2::point p, ale_pos tl_coord) {
assert(in_bounds(p));
tl_coord = round(tl_coord);
if (tl_coord >= entries)
tl_coord = entries;
if (tl_coord < 0)
tl_coord = 0;
p = p / (ale_pos) pow(2, tl_coord);
unsigned int itlc = (unsigned int) tl_coord;
if (p[0] > im[itlc]->height() - 1)
p[0] = im[itlc]->height() - 1;
if (p[1] > im[itlc]->width() - 1)
p[1] = im[itlc]->width() - 1;
assert(p[0] >= 0);
assert(p[1] >= 0);
return im[itlc]->get_max_diff(p);
}
/*
* Get the transformation
*/
pt get_t(unsigned int i) {
assert(i >= 0);
assert(i < entries);
return transformation[i];
}
/*
* Get the camera origin in world coordinates
*/
point origin() {
return transformation[0].origin();
}
/*
* Destructor
*/
~lod_image() {
for (unsigned int i = 0; i < entries; i++) {
delete im[i];
}
}
};
/*
* Structure to hold weight information for reference images.
*/
class ref_weights {
unsigned int f;
std::vector<d2::image *> weights;
pt transformation;
int tc_low;
int tc_high;
int initialized;
void set_image(d2::image *im, ale_real value) {
assert(im);
for (unsigned int i = 0; i < im->height(); i++)
for (unsigned int j = 0; j < im->width(); j++)
im->set_pixel(i, j, d2::pixel(value, value, value));
}
d2::image *make_image(ale_pos sf, ale_real init_value = 0) {
d2::image *result = d2::new_image_ale_real(
(unsigned int) ceil(transformation.unscaled_height() * sf),
(unsigned int) ceil(transformation.unscaled_width() * sf), 3);
assert(result);
if (init_value != 0)
set_image(result, init_value);
return result;
}
public:
/*
* Explicit weight subtree
*/
struct subtree {
ale_real node_value;
subtree *children[2][2];
subtree(ale_real nv, subtree *a, subtree *b, subtree *c, subtree *d) {
node_value = nv;
children[0][0] = a;
children[0][1] = b;
children[1][0] = c;
children[1][1] = d;
}
~subtree() {
for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++)
delete children[i][j];
}
};
/*
* Constructor
*/
ref_weights(unsigned int _f) {
f = _f;
transformation = d3::align::projective(f);
initialized = 0;
}
/*
* Check spatial bounds.
*/
int in_spatial_bounds(point p) {
if (!p.defined())
return 0;
if (p[0] < 0)
return 0;
if (p[1] < 0)
return 0;
if (p[0] > transformation.unscaled_height() - 1)
return 0;
if (p[1] > transformation.unscaled_width() - 1)
return 0;
if (p[2] >= 0)
return 0;
return 1;
}
int in_spatial_bounds(const space::traverse &t) {
point p = transformation.centroid(t);
return in_spatial_bounds(p);
}
/*
* Increase resolution to the given level.
*/
void increase_resolution(int tc, unsigned int i, unsigned int j) {
d2::image *im = weights[tc - tc_low];
assert(im);
assert(i <= im->height() - 1);
assert(j <= im->width() - 1);
/*
* Check for the cases known to have no lower level of detail.
*/
if (im->get_chan(i, j, 0) == -1)
return;
if (tc == tc_high)
return;
increase_resolution(tc + 1, i / 2, j / 2);
/*
* Load the lower-level image structure.
*/
d2::image *iim = weights[tc + 1 - tc_low];
assert(iim);
assert(i / 2 <= iim->height() - 1);
assert(j / 2 <= iim->width() - 1);
/*
* Check for the case where no lower level of detail is
* available.
*/
if (iim->get_chan(i / 2, j / 2, 0) == -1)
return;
/*
* Spread out the lower level of detail among (uninitialized)
* peer values.
*/
for (unsigned int ii = (i / 2) * 2; ii < (i / 2) * 2 + 1; ii++)
for (unsigned int jj = (j / 2) * 2; jj < (j / 2) * 2 + 1; jj++) {
assert(ii <= im->height() - 1);
assert(jj <= im->width() - 1);
assert(im->get_chan(ii, jj, 0) == 0);
im->set_pixel(ii, jj, iim->get_pixel(i / 2, j / 2));
}
/*
* Set the lower level of detail to point here.
*/
iim->set_chan(i / 2, j / 2, 0, -1);
}
/*
* Add weights to positive higher-resolution pixels where
* found when their current values match the given subtree
* values; set negative pixels to zero and return 0 if no
* positive higher-resolution pixels are found.
*/
int add_partial(int tc, unsigned int i, unsigned int j, ale_real weight, subtree *st) {
d2::image *im = weights[tc - tc_low];
assert(im);
if (i == im->height() - 1
|| j == im->width() - 1) {
return 1;
}
assert(i <= im->height() - 1);
assert(j <= im->width() - 1);
/*
* Check for positive values.
*/
if (im->get_chan(i, j, 0) > 0) {
if (st && st->node_value == im->get_pixel(i, j)[0])
im->set_chan(i, j, 0, (ale_real) im->get_chan(i, j, 0)
+ weight * (1 - im->get_pixel(i, j)[0]));
return 1;
}
/*
* Handle the case where there are no higher levels of detail.
*/
if (tc == tc_low) {
if (im->get_chan(i, j, 0) != 0) {
fprintf(stderr, "failing assertion: im[%d]->pix(%d, %d)[0] == %g\n", tc, i, j,
(double) im->get_chan(i, j, 0));
}
assert(im->get_chan(i, j, 0) == 0);
return 0;
}
/*
* Handle the case where higher levels of detail are available.
*/
int success[2][2];
for (int ii = 0; ii < 2; ii++)
for (int jj = 0; jj < 2; jj++)
success[ii][jj] = add_partial(tc - 1, i * 2 + ii, j * 2 + jj, weight,
st ? st->children[ii][jj] : NULL);
if (!success[0][0]
&& !success[0][1]
&& !success[1][0]
&& !success[1][1]) {
im->set_chan(i, j, 0, 0);
return 0;
}
d2::image *iim = weights[tc - 1 - tc_low];
assert(iim);
for (int ii = 0; ii < 2; ii++)
for (int jj = 0; jj < 2; jj++)
if (success[ii][jj] == 0) {
assert(i * 2 + ii < iim->height());
assert(j * 2 + jj < iim->width());
iim->set_chan(i * 2 + ii, j * 2 + jj, 0, weight);
}
im->set_chan(i, j, 0, -1);
return 1;
}
/*
* Add weight.
*/
void add_weight(int tc, unsigned int i, unsigned int j, ale_real weight, subtree *st) {
assert (weight >= 0);
d2::image *im = weights[tc - tc_low];
assert(im);
// fprintf(stderr, "[aw tc=%d i=%d j=%d imax=%d jmax=%d]\n",
// tc, i, j, im->height(), im->width());
assert(i <= im->height() - 1);
assert(j <= im->width() - 1);
/*
* Increase resolution, if necessary
*/
increase_resolution(tc, i, j);
/*
* Attempt to add the weight at levels of detail
* where weight is defined.
*/
if (add_partial(tc, i, j, weight, st))
return;
/*
* If no weights are defined at any level of detail,
* then set the weight here.
*/
im->set_chan(i, j, 0, weight);
}
void add_weight(int tc, d2::point p, ale_real weight, subtree *st) {
assert (weight >= 0);
p *= pow(2, -tc);
unsigned int i = (unsigned int) floor(p[0]);
unsigned int j = (unsigned int) floor(p[1]);
add_weight(tc, i, j, weight, st);
}
void add_weight(const space::traverse &t, ale_real weight, subtree *st) {
assert (weight >= 0);
if (weight == 0)
return;
ale_pos tc = transformation.trilinear_coordinate(t);
point p = transformation.centroid(t);
assert(in_spatial_bounds(p));
tc = round(tc);
/*
* Establish a reasonable (?) upper bound on resolution.
*/
if (tc < input_decimation_lower) {
weight /= pow(4, (input_decimation_lower - tc));
tc = input_decimation_lower;
}
/*
* Initialize, if necessary.
*/
if (!initialized) {
tc_low = tc_high = (int) tc;
ale_pos sf = pow(2, -tc);
weights.push_back(make_image(sf));
initialized = 1;
}
/*
* Check resolution bounds
*/
assert (tc_low <= tc_high);
/*
* Generate additional levels of detail, if necessary.
*/
while (tc < tc_low) {
tc_low--;
ale_pos sf = pow(2, -tc_low);
weights.insert(weights.begin(), make_image(sf));
}
while (tc > tc_high) {
tc_high++;
ale_pos sf = pow(2, -tc_high);
weights.push_back(make_image(sf, -1));
}
add_weight((int) tc, p.xy(), weight, st);
}
/*
* Get weight
*/
ale_real get_weight(int tc, unsigned int i, unsigned int j) {
// fprintf(stderr, "[gw tc=%d i=%u j=%u tclow=%d tchigh=%d]\n",
// tc, i, j, tc_low, tc_high);
if (tc < tc_low || !initialized)
return 0;
if (tc > tc_high) {
return (get_weight(tc - 1, i * 2 + 0, j * 2 + 0)
+ get_weight(tc - 1, i * 2 + 1, j * 2 + 0)
+ get_weight(tc - 1, i * 2 + 1, j * 2 + 1)
+ get_weight(tc - 1, i * 2 + 0, j * 2 + 1)) / 4;
}
assert(weights.size() > (unsigned int) (tc - tc_low));
d2::image *im = weights[tc - tc_low];
assert(im);
if (i == im->height())
return 1;
if (j == im->width())
return 1;
assert(i < im->height());
assert(j < im->width());
if (im->get_chan(i, j, 0) == -1) {
return (get_weight(tc - 1, i * 2 + 0, j * 2 + 0)
+ get_weight(tc - 1, i * 2 + 1, j * 2 + 0)
+ get_weight(tc - 1, i * 2 + 1, j * 2 + 1)
+ get_weight(tc - 1, i * 2 + 0, j * 2 + 1)) / 4;
}
if (im->get_chan(i, j, 0) == 0) {
if (tc == tc_high)
return 0;
if (weights[tc - tc_low + 1]->get_chan(i / 2, j / 2, 0) == -1)
return 0;
return get_weight(tc + 1, i / 2, j / 2);
}
return im->get_chan(i, j, 0);
}
ale_real get_weight(int tc, d2::point p) {
p *= pow(2, -tc);
unsigned int i = (unsigned int) floor(p[0]);
unsigned int j = (unsigned int) floor(p[1]);
return get_weight(tc, i, j);
}
ale_real get_weight(const space::traverse &t) {
ale_pos tc = transformation.trilinear_coordinate(t);
point p = transformation.centroid(t);
assert(in_spatial_bounds(p));
if (!initialized)
return 0;
tc = round(tc);
if (tc < tc_low) {
tc = tc_low;
}
return get_weight((int) tc, p.xy());
}
/*
* Check whether a subtree is simple.
*/
int is_simple(subtree *s) {
assert (s);
if (s->node_value == -1
&& s->children[0][0] == NULL
&& s->children[0][1] == NULL
&& s->children[1][0] == NULL
&& s->children[1][1] == NULL)
return 1;
return 0;
}
/*
* Get a weight subtree.
*/
subtree *get_subtree(int tc, unsigned int i, unsigned int j) {
/*
* tc > tc_high is handled recursively.
*/
if (tc > tc_high) {
subtree *result = new subtree(-1,
get_subtree(tc - 1, i * 2 + 0, j * 2 + 0),
get_subtree(tc - 1, i * 2 + 0, j * 2 + 1),
get_subtree(tc - 1, i * 2 + 1, j * 2 + 0),
get_subtree(tc - 1, i * 2 + 1, j * 2 + 1));
if (is_simple(result)) {
delete result;
return NULL;
}
return result;
}
assert(tc >= tc_low);
assert(weights[tc - tc_low]);
d2::image *im = weights[tc - tc_low];
/*
* Rectangular images will, in general, have
* out-of-bounds tree sections. Handle this case.
*/
if (i >= im->height())
return NULL;
if (j >= im->width())
return NULL;
/*
* -1 weights are handled recursively
*/
if (im->get_chan(i, j, 0) == -1) {
subtree *result = new subtree(-1,
get_subtree(tc - 1, i * 2 + 0, j * 2 + 0),
get_subtree(tc - 1, i * 2 + 0, j * 2 + 1),
get_subtree(tc - 1, i * 2 + 1, j * 2 + 0),
get_subtree(tc - 1, i * 2 + 1, j * 2 + 1));
if (is_simple(result)) {
im->set_chan(i, j, 0, 0);
delete result;
return NULL;
}
return result;
}
/*
* Zero weights have NULL subtrees.
*/
if (im->get_chan(i, j, 0) == 0)
return NULL;
/*
* Handle the remaining case.
*/
return new subtree(im->get_chan(i, j, 0), NULL, NULL, NULL, NULL);
}
subtree *get_subtree(int tc, d2::point p) {
p *= pow(2, -tc);
unsigned int i = (unsigned int) floor(p[0]);
unsigned int j = (unsigned int) floor(p[1]);
return get_subtree(tc, i, j);
}
subtree *get_subtree(const space::traverse &t) {
ale_pos tc = transformation.trilinear_coordinate(t);
point p = transformation.centroid(t);
assert(in_spatial_bounds(p));
if (!initialized)
return NULL;
if (tc < input_decimation_lower)
tc = input_decimation_lower;
tc = round(tc);
if (tc < tc_low)
return NULL;
return get_subtree((int) tc, p.xy());
}
/*
* Destructor
*/
~ref_weights() {
for (unsigned int i = 0; i < weights.size(); i++) {
delete weights[i];
}
}
};
/*
* Resolution check.
*/
static int resolution_ok(pt transformation, ale_pos tc) {
if (pow(2, tc) > transformation.unscaled_height()
|| pow(2, tc) > transformation.unscaled_width())
return 0;
if (tc < input_decimation_lower - 1.5)
return 0;
return 1;
}
/*
* Structure to hold input frame information at all levels of detail.
*/
class lod_images {
/*
* All images.
*/
std::vector<lod_image *> images;
public:
lod_images() {
images.resize(d2::image_rw::count(), NULL);
}
unsigned int count() {
return d2::image_rw::count();
}
void open(unsigned int f) {
assert (images[f] == NULL);
if (images[f] == NULL)
images[f] = new lod_image(f);
}
void open_all() {
for (unsigned int f = 0; f < d2::image_rw::count(); f++)
open(f);
}
lod_image *get(unsigned int f) {
assert (images[f] != NULL);
return images[f];
}
void close(unsigned int f) {
assert (images[f] != NULL);
delete images[f];
images[f] = NULL;
}
void close_all() {
for (unsigned int f = 0; f < d2::image_rw::count(); f++)
close(f);
}
~lod_images() {
close_all();
}
};
/*
* All levels-of-detail
*/
static struct lod_images *al;
/*
* Data structure for storing best encountered subspace candidates.
*/
class candidates {
std::vector<std::vector<std::pair<ale_pos, ale_real> > > levels;
int image_index;
unsigned int height;
unsigned int width;
/*
* Point p is in world coordinates.
*/
void generate_subspace(point iw, ale_pos diagonal) {
// fprintf(stderr, "[gs iw=%f %f %f d=%f]\n",
// iw[0], iw[1], iw[2], diagonal);
space::traverse st = space::traverse::root();
if (!st.includes(iw)) {
assert(0);
return;
}
int highres = 0;
int lowres = 0;
/*
* Loop until resolutions of interest have been generated.
*/
for(;;) {
ale_pos current_diagonal = (st.get_max() - st.get_min()).norm();
assert(!isnan(current_diagonal));
/*
* Generate any new desired spatial registers.
*/
/*
* Inputs
*/
for (int f = 0; f < 2; f++) {
/*
* Low resolution
*/
if (current_diagonal < 2 * diagonal
&& lowres == 0) {
if (spatial_info_map.find(st.get_node()) == spatial_info_map.end()) {
spatial_info_map[st.get_node()];
ui::get()->d3_increment_spaces();
}
lowres = 1;
}
/*
* High resolution.
*/
if (current_diagonal < diagonal
&& highres == 0) {
if (spatial_info_map.find(st.get_node()) == spatial_info_map.end()) {
spatial_info_map[st.get_node()];
ui::get()->d3_increment_spaces();
}
highres = 1;
}
}
/*
* Check for completion
*/
if (highres && lowres)
return;
/*
* Check precision before analyzing space further.
*/
if (st.precision_wall()) {
fprintf(stderr, "\n\n*** Error: reached subspace precision wall ***\n\n");
assert(0);
return;
}
if (st.positive().includes(iw)) {
st = st.positive();
total_tsteps++;
} else if (st.negative().includes(iw)) {
st = st.negative();
total_tsteps++;
} else {
fprintf(stderr, "failed iw = (%f, %f, %f)\n",
(double) iw[0], (double) iw[1], (double) iw[2]);
assert(0);
}
}
}
public:
candidates(int f) {
image_index = f;
height = (unsigned int) al->get(f)->get_t(0).unscaled_height();
width = (unsigned int) al->get(f)->get_t(0).unscaled_width();
/*
* Is this necessary?
*/
levels.resize(primary_decimation_upper - input_decimation_lower + 1);
for (int l = input_decimation_lower; l <= primary_decimation_upper; l++) {
levels[l - input_decimation_lower].resize((unsigned int) (floor(height / pow(2, l))
* floor(width / pow(2, l))
* pairwise_ambiguity),
std::pair<ale_pos, ale_real>(0, 0));
}
}
/*
* Point p is expected to be in local projective coordinates.
*/
void add_candidate(point p, int tc, ale_pos score) {
assert(tc <= primary_decimation_upper);
assert(tc >= input_decimation_lower);
assert(p[2] < 0);
assert(score >= 0);
int i = (unsigned int) floor(p[0] / (ale_pos) pow(2, tc));
int j = (unsigned int) floor(p[1] / (ale_pos) pow(2, tc));
int swidth = (int) floor(width / pow(2, tc));
assert(j < swidth);
assert(i < (int) floor(height / pow(2, tc)));
for (unsigned int k = 0; k < pairwise_ambiguity; k++) {
std::pair<ale_pos, ale_real> *pk =
&(levels[tc - input_decimation_lower][i * swidth * pairwise_ambiguity + j * pairwise_ambiguity + k]);
if (pk->first != 0 && score >= (ale_pos) pk->second)
continue;
if (i == 1 && j == 1 && tc == 4)
fprintf(stderr, "[ac p2=%f score=%f]\n", (double) p[2], (double) score);
ale_pos tp = pk->first;
ale_real tr = pk->second;
pk->first = p[2];
pk->second = score;
p[2] = tp;
score = tr;
if (p[2] == 0)
break;
}
}
/*
* Generate subspaces for candidates.
*/
void generate_subspaces() {
fprintf(stderr, "+");
for (int l = input_decimation_lower; l <= primary_decimation_upper; l++) {
unsigned int sheight = (unsigned int) floor(height / pow(2, l));
unsigned int swidth = (unsigned int) floor(width / pow(2, l));
for (unsigned int i = 0; i < sheight; i++)
for (unsigned int j = 0; j < swidth; j++)
for (unsigned int k = 0; k < pairwise_ambiguity; k++) {
std::pair<ale_pos, ale_real> *pk =
&(levels[l - input_decimation_lower]
[i * swidth * pairwise_ambiguity + j * pairwise_ambiguity + k]);
if (pk->first == 0) {
fprintf(stderr, "o");
continue;
} else {
fprintf(stderr, "|");
}
ale_pos si = i * pow(2, l) + ((l > 0) ? pow(2, l - 1) : 0);
ale_pos sj = j * pow(2, l) + ((l > 0) ? pow(2, l - 1) : 0);
// fprintf(stderr, "[gss l=%d i=%d j=%d d=%g]\n", l, i, j, pk->first);
point p = al->get(image_index)->get_t(0).pw_unscaled(point(si, sj, pk->first));
generate_subspace(p,
al->get(image_index)->get_t(0).diagonal_distance_3d(pk->first, l));
}
}
}
};
/*
* List for calculating weighted median.
*/
class wml {
ale_real *data;
unsigned int size;
unsigned int used;
ale_real &_w(unsigned int i) {
assert(i <= used);
return data[i * 2];
}
ale_real &_d(unsigned int i) {
assert(i <= used);
return data[i * 2 + 1];
}
void increase_capacity() {
if (size > 0)
size *= 2;
else
size = 1;
data = (ale_real *) realloc(data, sizeof(ale_real) * 2 * (size * 1));
assert(data);
assert (size > used);
if (!data) {
fprintf(stderr, "Unable to allocate %d bytes of memory\n",
sizeof(ale_real) * 2 * (size * 1));
exit(1);
}
}
void insert_weight(unsigned int i, ale_real v, ale_real w) {
assert(used < size);
assert(used >= i);
for (unsigned int j = used; j > i; j--) {
_w(j) = _w(j - 1);
_d(j) = _d(j - 1);
}
_w(i) = w;
_d(i) = v;
used++;
}
public:
unsigned int get_size() {
return size;
}
unsigned int get_used() {
return used;
}
void print_info() {
fprintf(stderr, "[st %p sz %u el", this, size);
for (unsigned int i = 0; i < used; i++)
fprintf(stderr, " (%f, %f)", (double) _d(i), (double) _w(i));
fprintf(stderr, "]\n");
}
void clear() {
used = 0;
}
void insert_weight(ale_real v, ale_real w) {
for (unsigned int i = 0; i < used; i++) {
if (_d(i) == v) {
_w(i) += w;
return;
}
if (_d(i) > v) {
if (used == size)
increase_capacity();
insert_weight(i, v, w);
return;
}
}
if (used == size)
increase_capacity();
insert_weight(used, v, w);
}
/*
* Finds the median at half-weight, or between half-weight
* and zero-weight, depending on the attenuation value.
*/
ale_real find_median(double attenuation = 0) {
assert(attenuation >= 0);
assert(attenuation <= 1);
ale_real zero1 = 0;
ale_real zero2 = 0;
ale_real undefined = zero1 / zero2;
ale_accum weight_sum = 0;
for (unsigned int i = 0; i < used; i++)
weight_sum += _w(i);
// if (weight_sum == 0)
// return undefined;
if (used == 0 || used == 1)
return undefined;
if (weight_sum == 0) {
ale_accum data_sum = 0;
for (unsigned int i = 0; i < used; i++)
data_sum += _d(i);
return data_sum / (ale_accum) used;
}
ale_accum midpoint = weight_sum * (ale_accum) (0.5 - 0.5 * attenuation);
ale_accum weight_sum_2 = 0;
for (unsigned int i = 0; i < used && weight_sum_2 < midpoint; i++) {
weight_sum_2 += _w(i);
if (weight_sum_2 > midpoint) {
return _d(i);
} else if (weight_sum_2 == midpoint) {
assert (i + 1 < used);
return (_d(i) + _d(i + 1)) / 2;
}
}
return undefined;
}
wml(int initial_size = 0) {
// if (initial_size == 0) {
// initial_size = (int) (d2::image_rw::count() * 1.5);
// }
size = initial_size;
used = 0;
if (size > 0) {
data = (ale_real *) malloc(size * sizeof(ale_real) * 2);
assert(data);
} else {
data = NULL;
}
}
/*
* copy constructor. This is required to avoid undesired frees.
*/
wml(const wml &w) {
size = w.size;
used = w.used;
data = (ale_real *) malloc(size * sizeof(ale_real) * 2);
assert(data);
memcpy(data, w.data, size * sizeof(ale_real) * 2);
}
~wml() {
free(data);
}
};
/*
* Class for information regarding spatial regions of interest.
*
* This class is configured for convenience in cases where sampling is
* performed using an approximation of the fine:box:1,triangle:2 chain.
* In this case, the *_1 variables would store the fine data and the
* *_2 variables would store the coarse data. Other uses are also
* possible.
*/
class spatial_info {
/*
* Map channel value --> weight.
*/
wml color_weights_1[3];
wml color_weights_2[3];
/*
* Current color.
*/
d2::pixel color;
/*
* Map occupancy value --> weight.
*/
wml occupancy_weights_1;
wml occupancy_weights_2;
/*
* Current occupancy value.
*/
ale_real occupancy;
/*
* pocc/socc density
*/
unsigned int pocc_density;
unsigned int socc_density;
/*
* Insert a weight into a list.
*/
void insert_weight(wml *m, ale_real v, ale_real w) {
m->insert_weight(v, w);
}
/*
* Find the median of a weighted list. Uses NaN for undefined.
*/
ale_real find_median(wml *m, double attenuation = 0) {
return m->find_median(attenuation);
}
public:
/*
* Constructor.
*/
spatial_info() {
color = d2::pixel::zero();
occupancy = 0;
pocc_density = 0;
socc_density = 0;
}
/*
* Accumulate color; primary data set.
*/
void accumulate_color_1(int f, d2::pixel color, d2::pixel weight) {
for (int k = 0; k < 3; k++)
insert_weight(&color_weights_1[k], color[k], weight[k]);
}
/*
* Accumulate color; secondary data set.
*/
void accumulate_color_2(d2::pixel color, d2::pixel weight) {
for (int k = 0; k < 3; k++)
insert_weight(&color_weights_2[k], color[k], weight[k]);
}
/*
* Accumulate occupancy; primary data set.
*/
void accumulate_occupancy_1(int f, ale_real occupancy, ale_real weight) {
insert_weight(&occupancy_weights_1, occupancy, weight);
}
/*
* Accumulate occupancy; secondary data set.
*/
void accumulate_occupancy_2(ale_real occupancy, ale_real weight) {
insert_weight(&occupancy_weights_2, occupancy, weight);
if (occupancy == 0 || occupancy_weights_2.get_size() < 96)
return;
// fprintf(stderr, "%p updated socc with: %f %f\n", this, occupancy, weight);
// occupancy_weights_2.print_info();
}
/*
* Update color (and clear accumulation structures).
*/
void update_color() {
for (int d = 0; d < 3; d++) {
ale_real c = find_median(&color_weights_1[d]);
if (isnan(c))
c = find_median(&color_weights_2[d]);
if (isnan(c))
c = 0;
color[d] = c;
color_weights_1[d].clear();
color_weights_2[d].clear();
}
}
/*
* Update occupancy (and clear accumulation structures).
*/
void update_occupancy() {
ale_real o = find_median(&occupancy_weights_1, occ_att);
if (isnan(o))
o = find_median(&occupancy_weights_2, occ_att);
if (isnan(o))
o = 0;
occupancy = o;
pocc_density = occupancy_weights_1.get_used();
socc_density = occupancy_weights_2.get_used();
occupancy_weights_1.clear();
occupancy_weights_2.clear();
}
/*
* Get current color.
*/
d2::pixel get_color() {
return color;
}
/*
* Get current occupancy.
*/
ale_real get_occupancy() {
assert (finite(occupancy));
return occupancy;
}
/*
* Get primary color density.
*/
unsigned int get_pocc_density() {
return pocc_density;
}
unsigned int get_socc_density() {
return socc_density;
}
};
/*
* Map spatial regions of interest to spatial info structures. XXX:
* This may get very poor cache behavior in comparison with, say, an
* array. Unfortunately, there is no immediately obvious array
* representation. If some kind of array representation were adopted,
* it would probably cluster regions of similar depth from the
* perspective of the typical camera. In particular, for a
* stereoscopic view, depth ordering for two random points tends to be
* similar between cameras, I think. Unfortunately, it is never
* identical for all points (unless cameras are co-located). One
* possible approach would be to order based on, say, camera 0's idea
* of depth.
*/
#if !defined(HASH_MAP_GNU) && !defined(HASH_MAP_STD)
typedef std::map<struct space::node *, spatial_info> spatial_info_map_t;
#elif defined(HASH_MAP_GNU)
struct node_hash
{
size_t operator()(struct space::node *n) const
{
return __gnu_cxx::hash<long>()((long) n);
}
};
typedef __gnu_cxx::hash_map<struct space::node *, spatial_info, node_hash > spatial_info_map_t;
#elif defined(HASH_MAP_STD)
typedef std::hash_map<struct space::node *, spatial_info> spatial_info_map_t;
#endif
static spatial_info_map_t spatial_info_map;
public:
/*
* Debugging variables.
*/
static unsigned long total_ambiguity;
static unsigned long total_pixels;
static unsigned long total_divisions;
static unsigned long total_tsteps;
/*
* Member functions
*/
static void et(double et_parameter) {
encounter_threshold = et_parameter;
}
static void dmr(double dmr_parameter) {
depth_median_radius = dmr_parameter;
}
static void fmr(double fmr_parameter) {
diff_median_radius = fmr_parameter;
}
static void load_model(const char *name) {
load_model_name = name;
}
static void save_model(const char *name) {
save_model_name = name;
}
static void fc(ale_pos fc) {
front_clip = fc;
}
static void di_upper(ale_pos _dgi) {
primary_decimation_upper = (int) round(_dgi);
}
static void do_try(ale_pos _dgo) {
output_decimation_preferred = (int) round(_dgo);
}
static void di_lower(ale_pos _idiv) {
input_decimation_lower = (int) round(_idiv);
}
static void oc() {
output_clip = 1;
}
static void no_oc() {
output_clip = 0;
}
static void rc(ale_pos rc) {
rear_clip = rc;
}
/*
* Initialize 3D scene from 2D scene, using 2D and 3D alignment
* information.
*/
static void init_from_d2() {
/*
* Rear clip value of 0 is converted to infinity.
*/
if (rear_clip == 0) {
ale_pos one = +1;
ale_pos zero = +0;
rear_clip = one / zero;
assert(isinf(rear_clip) && rear_clip > 0);
}
/*
* Scale and translate clipping plane depths.
*/
ale_pos cp_scalar = d3::align::projective(0).wc(point(0, 0, 0))[2];
front_clip = front_clip * cp_scalar - cp_scalar;
rear_clip = rear_clip * cp_scalar - cp_scalar;
/*
* Allocate image structures.
*/
al = new lod_images;
if (tc_multiplier != 0) {
al->open_all();
}
}
/*
* Perform spatial_info updating on a given subspace, for given
* parameters.
*/
static void subspace_info_update(space::iterate si, int f, ref_weights *weights) {
while(!si.done()) {
space::traverse st = si.get();
/*
* Reject out-of-bounds spaces.
*/
if (!weights->in_spatial_bounds(st)) {
si.next();
continue;
}
/*
* Skip spaces with no color information.
*
* XXX: This could be more efficient, perhaps.
*/
if (spatial_info_map.count(st.get_node()) == 0) {
si.next();
continue;
}
ui::get()->d3_increment_space_num();
/*
* Get in-bounds centroid, if one exists.
*/
point p = al->get(f)->get_t(0).centroid(st);
if (!p.defined()) {
si.next();
continue;
}
/*
* Get information on the subspace.
*/
spatial_info *sn = &spatial_info_map[st.get_node()];
d2::pixel color = sn->get_color();
ale_real occupancy = sn->get_occupancy();
/*
* Store current weight so we can later check for
* modification by higher-resolution subspaces.
*/
ref_weights::subtree *tree = weights->get_subtree(st);
/*
* Check for higher resolution subspaces, and
* update the space iterator.
*/
if (st.get_node()->positive
|| st.get_node()->negative) {
/*
* Cleave space for the higher-resolution pass,
* skipping the current space, since we will
* process that later.
*/
space::iterate cleaved_space = si.cleave();
cleaved_space.next();
subspace_info_update(cleaved_space, f, weights);
} else {
si.next();
}
/*
* Add new data on the subspace and update weights.
*/
ale_pos tc = al->get(f)->get_t(0).trilinear_coordinate(st);
d2::pixel pcolor = al->get(f)->get_tl(p.xy(), tc);
d2::pixel colordiff = (color - pcolor) * (ale_real) 256;
if (falloff_exponent != 0) {
d2::pixel max_diff = al->get(f)->get_max_diff(p.xy(), tc) * (ale_real) 256;
for (int k = 0; k < 3; k++)
if (max_diff[k] > 1)
colordiff[k] /= pow(max_diff[k], falloff_exponent);
}
/*
* Determine the probability of encounter.
*/
d2::pixel encounter = d2::pixel(1, 1, 1) * (1 - weights->get_weight(st));
/*
* Update weights
*/
weights->add_weight(st, occupancy, tree);
/*
* Delete the subtree, if necessary.
*/
delete tree;
/*
* Check for cases in which the subspace should not be
* updated.
*/
if (!resolution_ok(al->get(f)->get_t(0), tc))
continue;
if (d2::render::is_excluded_f(p.xy(), f))
continue;
/*
* Update subspace.
*/
sn->accumulate_color_1(f, pcolor, encounter);
d2::pixel channel_occ = pexp(-colordiff * colordiff);
ale_real occ = channel_occ[0];
for (int k = 1; k < 3; k++)
if (channel_occ[k] < occ)
occ = channel_occ[k];
sn->accumulate_occupancy_1(f, occ, encounter[0]);
}
}
/*
* Run a single iteration of the spatial_info update cycle.
*/
static void spatial_info_update() {
/*
* Iterate through each frame.
*/
for (unsigned int f = 0; f < d2::image_rw::count(); f++) {
ui::get()->d3_occupancy_status(f);
/*
* Open the frame and transformation.
*/
if (tc_multiplier == 0)
al->open(f);
/*
* Allocate weights data structure for storing encounter
* probabilities.
*/
ref_weights *weights = new ref_weights(f);
/*
* Call subspace_info_update for the root space.
*/
subspace_info_update(space::iterate(al->get(f)->origin()), f, weights);
/*
* Free weights.
*/
delete weights;
/*
* Close the frame and transformation.
*/
if (tc_multiplier == 0)
al->close(f);
}
/*
* Update all spatial_info structures.
*/
for (spatial_info_map_t::iterator i = spatial_info_map.begin(); i != spatial_info_map.end(); i++) {
i->second.update_color();
i->second.update_occupancy();
// d2::pixel color = i->second.get_color();
// fprintf(stderr, "space p=%p updated to c=[%f %f %f] o=%f\n",
// i->first, color[0], color[1], color[2],
// i->second.get_occupancy());
}
}
/*
* Support function for view() and depth(). This function
* always performs exclusion.
*/
static const void view_recurse(int type, d2::image *im, d2::image *weights, space::iterate si, pt _pt,
int prune = 0, d2::point pl = d2::point(0, 0), d2::point ph = d2::point(0, 0)) {
while (!si.done()) {
space::traverse st = si.get();
/*
* Remove excluded regions.
*/
if (excluded(st)) {
si.cleave();
continue;
}
/*
* Prune.
*/
if (prune && !_pt.check_inclusion_scaled(st, pl, ph)) {
si.cleave();
continue;
}
/*
* XXX: This could be more efficient, perhaps.
*/
if (spatial_info_map.count(st.get_node()) == 0) {
si.next();
continue;
}
ui::get()->d3_increment_space_num();
spatial_info sn = spatial_info_map[st.get_node()];
/*
* Get information on the subspace.
*/
d2::pixel color = sn.get_color();
// d2::pixel color = d2::pixel(1, 1, 1) * (double) (((unsigned int) (st.get_node()) / sizeof(space)) % 65535);
ale_real occupancy = sn.get_occupancy();
/*
* Determine the view-local bounding box for the
* subspace.
*/
point bb[2];
_pt.get_view_local_bb_scaled(st, bb);
point min = bb[0];
point max = bb[1];
if (prune) {
if (min[0] > ph[0]
|| min[1] > ph[1]
|| max[0] < pl[0]
|| max[1] < pl[1]) {
si.next();
continue;
}
if (min[0] < pl[0])
min[0] = pl[0];
if (min[1] < pl[1])
min[1] = pl[1];
if (max[0] > ph[0])
max[0] = ph[0];
if (max[1] > ph[1])
max[1] = ph[1];
min[0] -= pl[0];
min[1] -= pl[1];
max[0] -= pl[0];
max[1] -= pl[1];
}
/*
* Data structure to check modification of weights by
* higher-resolution subspaces.
*/
std::queue<d2::pixel> weight_queue;
/*
* Check for higher resolution subspaces, and
* update the space iterator.
*/
if (st.get_node()->positive
|| st.get_node()->negative) {
/*
* Store information about current weights,
* so we will know which areas have been
* covered by higher-resolution subspaces.
*/
for (int i = (int) ceil(min[0]); i <= (int) floor(max[0]); i++)
for (int j = (int) ceil(min[1]); j <= (int) floor(max[1]); j++)
weight_queue.push(weights->get_pixel(i, j));
/*
* Cleave space for the higher-resolution pass,
* skipping the current space, since we will
* process that afterward.
*/
space::iterate cleaved_space = si.cleave();
cleaved_space.next();
view_recurse(type, im, weights, cleaved_space, _pt, prune, pl, ph);
} else {
si.next();
}
/*
* Iterate over pixels in the bounding box, finding
* pixels that intersect the subspace. XXX: assume
* for now that all pixels in the bounding box
* intersect the subspace.
*/
for (int i = (int) ceil(min[0]); i <= (int) floor(max[0]); i++)
for (int j = (int) ceil(min[1]); j <= (int) floor(max[1]); j++) {
/*
* Check for higher-resolution updates.
*/
if (weight_queue.size()) {
if (weight_queue.front() != weights->get_pixel(i, j)) {
weight_queue.pop();
continue;
}
weight_queue.pop();
}
/*
* Determine the probability of encounter.
*/
d2::pixel encounter = (d2::pixel(1, 1, 1)
- weights->get_pixel(i, j))
* occupancy;
/*
* Update images.
*/
if (type == 0) {
/*
* Color view
*/
weights->set_pixel(i, j, (d2::pixel) weights->get_pixel(i, j)
+ encounter);
im->set_pixel(i, j, (d2::pixel) im->get_pixel(i, j)
+ encounter * color);
} else if (type == 1) {
/*
* Weighted (transparent) depth display
*/
ale_pos depth_value = _pt.wp_scaled(st.get_min())[2];
weights->set_pixel(i, j, (d2::pixel) weights->get_pixel(i, j)
+ encounter);
im->set_pixel(i, j, (d2::pixel) im->get_pixel(i, j)
+ encounter * (ale_real) depth_value);
} else if (type == 2) {
/*
* Ambiguity (ambivalence) measure.
*/
weights->set_pixel(i, j, d2::pixel(1, 1, 1));
im->set_pixel(i, j, (d2::pixel) im->get_pixel(i, j)
+ 0.1 * d2::pixel(1, 1, 1));
} else if (type == 3) {
/*
* Closeness measure.
*/
ale_pos depth_value = _pt.wp_scaled(st.get_min())[2];
if (weights->get_chan(i, j, 0) == 0) {
weights->set_pixel(i, j, d2::pixel(1, 1, 1));
im->set_pixel(i, j, d2::pixel(1, 1, 1)
* (ale_real) depth_value);
} else if (im->get_chan(i, j, 2) < (ale_sreal) depth_value) {
im->set_pixel(i, j, d2::pixel(1, 1, 1)
* (ale_real) depth_value);
} else {
continue;
}
} else if (type == 4) {
/*
* Weighted (transparent) contribution display
*/
ale_pos contribution_value = sn.get_pocc_density() /* + sn.get_socc_density() */;
weights->set_pixel(i, j, (d2::pixel) weights->get_pixel(i, j)
+ encounter);
im->set_pixel(i, j, (d2::pixel) im->get_pixel(i, j)
+ encounter * (ale_real) contribution_value);
assert (finite(encounter[0]));
assert (finite(contribution_value));
} else if (type == 5) {
/*
* Weighted (transparent) occupancy display
*/
ale_real contribution_value = occupancy;
weights->set_pixel(i, j, (d2::pixel) weights->get_pixel(i, j)
+ encounter);
im->set_pixel(i, j, (d2::pixel) im->get_pixel(i, j)
+ encounter * contribution_value);
} else if (type == 6) {
/*
* (Depth, xres, yres) triple
*/
ale_pos depth_value = _pt.wp_scaled(st.get_min())[2];
weights->set_chan(i, j, 0, weights->get_chan(i, j, 0)
+ encounter[0]);
if (weights->get_pixel(i, j)[1] < encounter[0]) {
weights->set_chan(i, j, 1, encounter[0]);
im->set_pixel(i, j, d2::pixel(
weights->get_pixel(i, j)[1] * (ale_real) depth_value,
ale_pos_to_real(max[0] - min[0]),
ale_pos_to_real(max[1] - min[1])));
}
} else if (type == 7) {
/*
* (xoff, yoff, 0) triple
*/
weights->set_chan(i, j, 0,
weights->get_chan(i, j, 0) + encounter[0]);
if (weights->get_chan(i, j, 1) < (ale_sreal) encounter[0]) {
weights->set_chan(i, j, 1, encounter[0]);
im->set_pixel(i, j, d2::pixel(
ale_pos_to_real(i - min[0]),
ale_pos_to_real(j - min[1]),
0));
}
} else if (type == 8) {
/*
* Value = 1 for any intersected space.
*/
weights->set_pixel(i, j, d2::pixel(1, 1, 1));
im->set_pixel(i, j, d2::pixel(1, 1, 1));
} else if (type == 9) {
/*
* Number of contributions for the nearest space.
*/
if (weights->get_chan(i, j, 0) == 1)
continue;
weights->set_pixel(i, j, d2::pixel(1, 1, 1));
im->set_pixel(i, j, d2::pixel(1, 1, 1) * (sn.get_pocc_density() * 0.1));
} else
assert(0);
}
}
}
/*
* Generate an depth image from a specified view.
*/
static const d2::image *depth(pt _pt, int n = -1, int prune = 0,
d2::point pl = d2::point(0, 0), d2::point ph = d2::point(0, 0)) {
assert ((unsigned int) n < d2::image_rw::count() || n < 0);
_pt.view_angle(_pt.view_angle() * VIEW_ANGLE_MULTIPLIER);
if (n >= 0) {
assert((int) floor(d2::align::of(n).scaled_height())
== (int) floor(_pt.scaled_height()));
assert((int) floor(d2::align::of(n).scaled_width())
== (int) floor(_pt.scaled_width()));
}
d2::image *im1, *im2, *im3, *weights;;
if (prune) {
im1 = d2::new_image_ale_real((int) floor(ph[0] - pl[0]) + 1,
(int) floor(ph[1] - pl[1]) + 1, 3);
im2 = d2::new_image_ale_real((int) floor(ph[0] - pl[0]) + 1,
(int) floor(ph[1] - pl[1]) + 1, 3);
im3 = d2::new_image_ale_real((int) floor(ph[0] - pl[0]) + 1,
(int) floor(ph[1] - pl[1]) + 1, 3);
weights = d2::new_image_ale_real((int) floor(ph[0] - pl[0]) + 1,
(int) floor(ph[1] - pl[1]) + 1, 3);
} else {
im1 = d2::new_image_ale_real((int) floor(_pt.scaled_height()),
(int) floor(_pt.scaled_width()), 3);
im2 = d2::new_image_ale_real((int) floor(_pt.scaled_height()),
(int) floor(_pt.scaled_width()), 3);
im3 = d2::new_image_ale_real((int) floor(_pt.scaled_height()),
(int) floor(_pt.scaled_width()), 3);
weights = d2::new_image_ale_real((int) floor(_pt.scaled_height()),
(int) floor(_pt.scaled_width()), 3);
}
/*
* Iterate through subspaces.
*/
space::iterate si(_pt.origin());
view_recurse(6, im1, weights, si, _pt, prune, pl, ph);
delete weights;
if (prune) {
weights = d2::new_image_ale_real((int) floor(ph[0] - pl[0]) + 1,
(int) floor(ph[1] - pl[1]) + 1, 3);
} else {
weights = d2::new_image_ale_real((int) floor(_pt.scaled_height()),
(int) floor(_pt.scaled_width()), 3);
}
#if 1
view_recurse(7, im2, weights, si, _pt, prune, pl, ph);
#else
view_recurse(8, im2, weights, si, _pt, prune, pl, ph);
return im2;
#endif
/*
* Normalize depths by weights
*/
if (normalize_weights)
for (unsigned int i = 0; i < im1->height(); i++)
for (unsigned int j = 0; j < im1->width(); j++)
im1->set_chan(i, j, 0, im1->get_chan(i, j, 0) / weights->get_chan(i, j, 1));
for (unsigned int i = 0; i < im1->height(); i++)
for (unsigned int j = 0; j < im1->width(); j++) {
/*
* Handle interpolation.
*/
d2::point x;
d2::point blx;
d2::point res((double) im1->get_chan(i, j, 1),
(double) im1->get_chan(i, j, 2));
for (int d = 0; d < 2; d++) {
if (im2->get_chan(i, j, d) < (ale_sreal) res[d] / 2)
x[d] = (ale_pos) (d?j:i) - res[d] / 2 - (ale_pos) im2->get_chan(i, j, d);
else
x[d] = (ale_pos) (d?j:i) + res[d] / 2 - (ale_pos) im2->get_chan(i, j, d);
blx[d] = 1 - ((d?j:i) - x[d]) / res[d];
}
ale_real depth_val = 0;
ale_real depth_weight = 0;
for (int ii = 0; ii < 2; ii++)
for (int jj = 0; jj < 2; jj++) {
d2::point p = x + d2::point(ii, jj) * res;
if (im1->in_bounds(p)) {
ale_real d = im1->get_bl(p)[0];
if (isnan(d))
continue;
ale_real w = ale_pos_to_real((ii ? (1 - blx[0]) : blx[0]) * (jj ? (1 - blx[1]) : blx[1]));
depth_weight += w;
depth_val += w * d;
}
}
ale_real depth = depth_val / depth_weight;
/*
* Handle encounter thresholds
*/
if (weights->get_chan(i, j, 0) < encounter_threshold) {
im3->set_pixel(i, j, d2::pixel::zero() / d2::pixel::zero());
} else {
im3->set_pixel(i, j, d2::pixel(1, 1, 1) * depth);
}
}
delete weights;
delete im1;
delete im2;
return im3;
}
static const d2::image *depth(unsigned int n) {
assert (n < d2::image_rw::count());
pt _pt = align::projective(n);
return depth(_pt, n);
}
/*
* This function always performs exclusion.
*/
static space::node *most_visible_pointwise(d2::pixel *weight, space::iterate si, pt _pt, d2::point p) {
space::node *result = NULL;
while (!si.done()) {
space::traverse st = si.get();
/*
* Prune certain regions known to be uninteresting.
*/
if (excluded(st) || !_pt.check_inclusion_scaled(st, p)) {
si.cleave();
continue;
}
/*
* XXX: This could be more efficient, perhaps.
*/
if (spatial_info_map.count(st.get_node()) == 0) {
si.next();
continue;
}
spatial_info sn = spatial_info_map[st.get_node()];
/*
* Get information on the subspace.
*/
ale_real occupancy = sn.get_occupancy();
/*
* Preserve current weight in order to check for
* modification by higher-resolution subspaces.
*/
d2::pixel old_weight = *weight;
/*
* Check for higher resolution subspaces, and
* update the space iterator.
*/
if (st.get_node()->positive
|| st.get_node()->negative) {
/*
* Cleave space for the higher-resolution pass,
* skipping the current space, since we will
* process that afterward.
*/
space::iterate cleaved_space = si.cleave();
cleaved_space.next();
space::node *r = most_visible_pointwise(weight, cleaved_space, _pt, p);
if (old_weight[1] != (*weight)[1])
result = r;
} else {
si.next();
}
/*
* Check for higher-resolution updates.
*/
if (old_weight != *weight)
continue;
/*
* Determine the probability of encounter.
*/
ale_real encounter = (1 - (*weight)[0]) * occupancy;
/*
* (*weight)[0] stores the cumulative weight; (*weight)[1] stores the maximum.
*/
if (encounter > (*weight)[1]) {
result = st.get_node();
(*weight)[1] = encounter;
}
(*weight)[0] += encounter;
}
return result;
}
/*
* This function performs exclusion iff SCALED is true.
*/
static void most_visible_generic(std::vector<space::node *> &results, d2::image *weights,
space::iterate si, pt _pt, int scaled) {
assert (results.size() == weights->height() * weights->width());
while (!si.done()) {
space::traverse st = si.get();
if (scaled && excluded(st)) {
si.cleave();
continue;
}
/*
* XXX: This could be more efficient, perhaps.
*/
if (spatial_info_map.count(st.get_node()) == 0) {
si.next();
continue;
}
spatial_info sn = spatial_info_map[st.get_node()];
/*
* Get information on the subspace.
*/
ale_real occupancy = sn.get_occupancy();
/*
* Determine the view-local bounding box for the
* subspace.
*/
point bb[2];
_pt.get_view_local_bb_scaled(st, bb);
point min = bb[0];
point max = bb[1];
/*
* Data structure to check modification of weights by
* higher-resolution subspaces.
*/
std::queue<d2::pixel> weight_queue;
/*
* Check for higher resolution subspaces, and
* update the space iterator.
*/
if (st.get_node()->positive
|| st.get_node()->negative) {
/*
* Store information about current weights,
* so we will know which areas have been
* covered by higher-resolution subspaces.
*/
for (int i = (int) ceil(min[0]); i <= (int) floor(max[0]); i++)
for (int j = (int) ceil(min[1]); j <= (int) floor(max[1]); j++)
weight_queue.push(weights->get_pixel(i, j));
/*
* Cleave space for the higher-resolution pass,
* skipping the current space, since we will
* process that afterward.
*/
space::iterate cleaved_space = si.cleave();
cleaved_space.next();
most_visible_generic(results, weights, cleaved_space, _pt, scaled);
} else {
si.next();
}
/*
* Iterate over pixels in the bounding box, finding
* pixels that intersect the subspace. XXX: assume
* for now that all pixels in the bounding box
* intersect the subspace.
*/
for (int i = (int) ceil(min[0]); i <= (int) floor(max[0]); i++)
for (int j = (int) ceil(min[1]); j <= (int) floor(max[1]); j++) {
/*
* Check for higher-resolution updates.
*/
if (weight_queue.size()) {
if (weight_queue.front() != weights->get_pixel(i, j)) {
weight_queue.pop();
continue;
}
weight_queue.pop();
}
/*
* Determine the probability of encounter.
*/
ale_real encounter = (1 - weights->get_pixel(i, j)[0]) * occupancy;
/*
* weights[0] stores the cumulative weight; weights[1] stores the maximum.
*/
if (encounter > weights->get_pixel(i, j)[1]
|| results[i * weights->width() + j] == NULL) {
results[i * weights->width() + j] = st.get_node();
weights->set_chan(i, j, 1, encounter);
}
weights->set_chan(i, j, 0, weights->get_chan(i, j, 0) + encounter);
}
}
}
static std::vector<space::node *> most_visible_scaled(pt _pt) {
d2::image *weights = d2::new_image_ale_real((int) floor(_pt.scaled_height()),
(int) floor(_pt.scaled_width()), 3);
std::vector<space::node *> results;
results.resize(weights->height() * weights->width(), 0);
most_visible_generic(results, weights, space::iterate(_pt.origin()), _pt, 1);
return results;
}
static std::vector<space::node *> most_visible_unscaled(pt _pt) {
d2::image *weights = d2::new_image_ale_real((int) floor(_pt.unscaled_height()),
(int) floor(_pt.unscaled_width()), 3);
std::vector<space::node *> results;
results.resize(weights->height() * weights->width(), 0);
most_visible_generic(results, weights, space::iterate(_pt.origin()), _pt, 0);
return results;
}
static const int visibility_search(const std::vector<space::node *> &fmv, space::node *mv) {
if (mv == NULL)
return 0;
if (std::binary_search(fmv.begin(), fmv.end(), mv))
return 1;
return (visibility_search(fmv, mv->positive)
|| visibility_search(fmv, mv->negative));
}
/*
* Class to generate focal sample views.
*/
class view_generator {
/*
* Original projective transformation.
*/
pt original_pt;
/*
* Data type for shared view data.
*/
class shared_view {
pt _pt;
std::vector<space::node *> mv;
d2::image *color;
d2::image *color_weights;
const d2::image *_depth;
d2::image *median_depth;
d2::image *median_diff;
public:
shared_view(pt _pt) {
this->_pt = _pt;
color = NULL;
color_weights = NULL;
_depth = NULL;
median_depth = NULL;
median_diff = NULL;
}
shared_view(const shared_view &copy_origin) {
_pt = copy_origin._pt;
mv = copy_origin.mv;
color = NULL;
color_weights = NULL;
_depth = NULL;
median_depth = NULL;
median_diff = NULL;
}
~shared_view() {
delete color;
delete _depth;
delete color_weights;
delete median_diff;
delete median_depth;
}
void get_view_recurse(d2::image *data, d2::image *weights, int type) {
/*
* Iterate through subspaces.
*/
space::iterate si(_pt.origin());
ui::get()->d3_render_status(0, 0, -1, -1, -1, -1, 0);
view_recurse(type, data, weights, si, _pt);
}
void init_color() {
color = d2::new_image_ale_real((int) floor(_pt.scaled_height()),
(int) floor(_pt.scaled_width()), 3);
color_weights = d2::new_image_ale_real((int) floor(_pt.scaled_height()),
(int) floor(_pt.scaled_width()), 3);
get_view_recurse(color, color_weights, 0);
}
void init_depth() {
_depth = depth(_pt, -1);
}
void init_medians() {
if (!_depth)
init_depth();
assert(_depth);
median_diff = _depth->fcdiff_median((int) floor(diff_median_radius));
median_depth = _depth->medians((int) floor(depth_median_radius));
assert(median_diff);
assert(median_depth);
}
public:
pt get_pt() {
return _pt;
}
space::node *get_most_visible(unsigned int i, unsigned int j) {
unsigned int height = (int) floor(_pt.scaled_height());
unsigned int width = (int) floor(_pt.scaled_width());
if (i >= height
|| j >= width) {
return NULL;
}
if (mv.size() == 0) {
mv = most_visible_scaled(_pt);
}
assert (mv.size() > i * width + j);
return mv[i * width + j];
}
space::node *get_most_visible(d2::point p) {
unsigned int i = (unsigned int) round (p[0]);
unsigned int j = (unsigned int) round (p[1]);
return get_most_visible(i, j);
}
d2::pixel get_color(unsigned int i, unsigned int j) {
if (color == NULL) {
init_color();
}
assert (color != NULL);
return color->get_pixel(i, j);
}
d2::pixel get_depth(unsigned int i, unsigned int j) {
if (_depth == NULL) {
init_depth();
}
assert (_depth != NULL);
return _depth->get_pixel(i, j);
}
void get_median_depth_and_diff(d2::pixel *t, d2::pixel *f, unsigned int i, unsigned int j) {
if (median_depth == NULL && median_diff == NULL)
init_medians();
assert (median_depth && median_diff);
if (i >= median_depth->height()
|| j >= median_depth->width()) {
*t = d2::pixel::undefined();
*f = d2::pixel::undefined();
} else {
*t = median_depth->get_pixel(i, j);
*f = median_diff->get_pixel(i, j);
}
}
void get_color_and_weight(d2::pixel *c, d2::pixel *w, d2::point p) {
if (color == NULL) {
init_color();
}
assert (color != NULL);
if (!color->in_bounds(p)) {
*c = d2::pixel::undefined();
*w = d2::pixel::undefined();
} else {
*c = color->get_bl(p);
*w = color_weights->get_bl(p);
}
}
d2::pixel get_depth(d2::point p) {
if (_depth == NULL) {
init_depth();
}
assert (_depth != NULL);
if (!_depth->in_bounds(p)) {
return d2::pixel::undefined();
}
return _depth->get_bl(p);
}
void get_median_depth_and_diff(d2::pixel *t, d2::pixel *f, d2::point p) {
if (median_diff == NULL && median_depth == NULL)
init_medians();
assert (median_diff != NULL && median_depth != NULL);
if (!median_diff->in_bounds(p)) {
*t = d2::pixel::undefined();
*f = d2::pixel::undefined();
} else {
*t = median_depth->get_bl(p);
*f = median_diff->get_bl(p);
}
}
};
/*
* Shared view array, indexed by aperture diameter and view number.
*/
std::map<ale_pos, std::vector<shared_view> > aperture_to_shared_views_map;
/*
* Method to generate a new stochastic focal view.
*/
pt get_new_view(ale_pos aperture) {
ale_pos ofx = aperture;
ale_pos ofy = aperture;
while (ofx * ofx + ofy * ofy > aperture * aperture / 4) {
ofx = (rand() * aperture) / RAND_MAX - aperture / 2;
ofy = (rand() * aperture) / RAND_MAX - aperture / 2;
}
/*
* Generate a new view from the given offset.
*/
point new_view = original_pt.cw(point(ofx, ofy, 0));
pt _pt_new = original_pt;
for (int d = 0; d < 3; d++)
_pt_new.e().set_translation(d, -new_view[d]);
return _pt_new;
}
public:
/*
* Result type.
*/
class view {
shared_view *sv;
pt _pt;
public:
view(shared_view *sv, pt _pt = pt()) {
this->sv = sv;
if (sv) {
this->_pt = sv->get_pt();
} else {
this->_pt = _pt;
}
}
pt get_pt() {
return _pt;
}
space::node *get_most_visible(unsigned int i, unsigned int j) {
assert (sv);
return sv->get_most_visible(i, j);
}
space::node *get_most_visible(d2::point p) {
if (sv) {
return sv->get_most_visible(p);
}
d2::pixel weight(0, 0, 0);
return most_visible_pointwise(&weight, space::iterate(_pt.origin()), _pt, p);
}
d2::pixel get_color(unsigned int i, unsigned int j) {
return sv->get_color(i, j);
}
void get_color_and_weight(d2::pixel *color, d2::pixel *weight, d2::point p) {
if (sv) {
sv->get_color_and_weight(color, weight, p);
return;
}
/*
* Determine weight and color for the given point.
*/
d2::image *im_point = d2::new_image_ale_real(1, 1, 3);
d2::image *wt_point = d2::new_image_ale_real(1, 1, 3);
view_recurse(0, im_point, wt_point, space::iterate(_pt.origin()), _pt, 1, p, p);
*color = im_point->get_pixel(0, 0);
*weight = wt_point->get_pixel(0, 0);
delete im_point;
delete wt_point;
return;
}
d2::pixel get_depth(unsigned int i, unsigned int j) {
assert(sv);
return sv->get_depth(i, j);
}
void get_median_depth_and_diff(d2::pixel *depth, d2::pixel *diff, unsigned int i, unsigned int j) {
assert(sv);
sv->get_median_depth_and_diff(depth, diff, i, j);
}
void get_median_depth_and_diff(d2::pixel *_depth, d2::pixel *_diff, d2::point p) {
if (sv) {
sv->get_median_depth_and_diff(_depth, _diff, p);
return;
}
/*
* Generate a local depth image of required radius.
*/
ale_pos radius = 1;
if (diff_median_radius + 1 > radius)
radius = diff_median_radius + 1;
if (depth_median_radius > radius)
radius = depth_median_radius;
d2::point pl = p - d2::point(radius, radius);
d2::point ph = p + d2::point(radius, radius);
const d2::image *local_depth = depth(_pt, -1, 1, pl, ph);
/*
* Find depth and diff at this point, check for
* undefined values, and generate projections
* of the image corners on the estimated normal
* surface.
*/
d2::image *median_diffs = local_depth->fcdiff_median((int) floor(diff_median_radius));
d2::image *median_depths = local_depth->medians((int) floor(depth_median_radius));
*_depth = median_depths->get_pixel((int) radius, (int) radius);
*_diff = median_diffs->get_pixel((int) radius, (int) radius);
delete median_diffs;
delete median_depths;
delete local_depth;
}
};
view get_view(ale_pos aperture, unsigned index, unsigned int randomization) {
if (randomization == 0) {
while (aperture_to_shared_views_map[aperture].size() <= index) {
aperture_to_shared_views_map[aperture].push_back(shared_view(get_new_view(aperture)));
}
return view(&(aperture_to_shared_views_map[aperture][index]));
}
return view(NULL, get_new_view(aperture));
}
view_generator(pt original_pt) {
this->original_pt = original_pt;
}
};
/*
* Unfiltered function
*/
static const d2::image *view_nofilter_focus(pt _pt, int n) {
assert ((unsigned int) n < d2::image_rw::count() || n < 0);
if (n >= 0) {
assert((int) floor(d2::align::of(n).scaled_height())
== (int) floor(_pt.scaled_height()));
assert((int) floor(d2::align::of(n).scaled_width())
== (int) floor(_pt.scaled_width()));
}
const d2::image *depths = depth(_pt, n);
d2::image *im = d2::new_image_ale_real((int) floor(_pt.scaled_height()),
(int) floor(_pt.scaled_width()), 3);
_pt.view_angle(_pt.view_angle() * VIEW_ANGLE_MULTIPLIER);
view_generator vg(_pt);
for (unsigned int i = 0; i < im->height(); i++)
for (unsigned int j = 0; j < im->width(); j++) {
focus::result _focus = focus::get(depths, i, j);
if (!finite(_focus.focal_distance))
continue;
/*
* Data structures for calculating focal statistics.
*/
d2::pixel color, weight;
d2::image_weighted_median *iwm = NULL;
if (_focus.statistic == 1) {
iwm = new d2::image_weighted_median(1, 1, 3, _focus.sample_count);
}
/*
* Iterate over views for this focus region.
*/
for (unsigned int v = 0; v < _focus.sample_count; v++) {
view_generator::view vw = vg.get_view(_focus.aperture, v, _focus.randomization);
ui::get()->d3_render_status(0, 1, -1, v, i, j, -1);
/*
* Map the focused point to the new view.
*/
point p = vw.get_pt().wp_scaled(_pt.pw_scaled(point(i, j, _focus.focal_distance)));
/*
* Determine weight and color for the given point.
*/
d2::pixel view_weight, view_color;
vw.get_color_and_weight(&view_color, &view_weight, p.xy());
if (!color.finite() || !weight.finite())
continue;
if (_focus.statistic == 0) {
color += view_color;
weight += view_weight;
} else if (_focus.statistic == 1) {
iwm->accumulate(0, 0, v, view_color, view_weight);
} else
assert(0);
}
if (_focus.statistic == 1) {
weight = iwm->get_weights()->get_pixel(0, 0);
color = iwm->get_pixel(0, 0);
delete iwm;
}
if (weight.min_norm() < encounter_threshold) {
im->set_pixel(i, j, d2::pixel::zero() / d2::pixel::zero());
} else if (normalize_weights)
im->set_pixel(i, j, color / weight);
else
im->set_pixel(i, j, color);
}
delete depths;
return im;
}
/*
* Unfiltered function
*/
static const d2::image *view_nofilter(pt _pt, int n) {
if (!focus::is_trivial())
return view_nofilter_focus(_pt, n);
assert ((unsigned int) n < d2::image_rw::count() || n < 0);
if (n >= 0) {
assert((int) floor(d2::align::of(n).scaled_height())
== (int) floor(_pt.scaled_height()));
assert((int) floor(d2::align::of(n).scaled_width())
== (int) floor(_pt.scaled_width()));
}
const d2::image *depths = depth(_pt, n);
d2::image *im = d2::new_image_ale_real((int) floor(_pt.scaled_height()),
(int) floor(_pt.scaled_width()), 3);
_pt.view_angle(_pt.view_angle() * VIEW_ANGLE_MULTIPLIER);
/*
* Use adaptive subspace data.
*/
d2::image *weights = d2::new_image_ale_real((int) floor(_pt.scaled_height()),
(int) floor(_pt.scaled_width()), 3);
/*
* Iterate through subspaces.
*/
space::iterate si(_pt.origin());
ui::get()->d3_render_status(0, 0, -1, -1, -1, -1, 0);
view_recurse(0, im, weights, si, _pt);
for (unsigned int i = 0; i < im->height(); i++)
for (unsigned int j = 0; j < im->width(); j++) {
if (weights->get_pixel(i, j).min_norm() < encounter_threshold
|| (d3px_count > 0 && isnan(depths->get_chan(i, j, 0)))) {
im->set_pixel(i, j, d2::pixel::zero() / d2::pixel::zero());
weights->set_pixel(i, j, d2::pixel::zero());
} else if (normalize_weights)
im->set_pixel(i, j, (d2::pixel) im->get_pixel(i, j)
/ (d2::pixel) weights->get_pixel(i, j));
}
delete weights;
delete depths;
return im;
}
/*
* Filtered function.
*/
static const d2::image *view_filter_focus(pt _pt, int n) {
assert ((unsigned int) n < d2::image_rw::count() || n < 0);
/*
* Get depth image for focus region determination.
*/
const d2::image *depths = depth(_pt, n);
unsigned int height = (unsigned int) floor(_pt.scaled_height());
unsigned int width = (unsigned int) floor(_pt.scaled_width());
/*
* Prepare input frame data.
*/
if (tc_multiplier == 0)
al->open_all();
pt *_ptf = new pt[al->count()];
std::vector<space::node *> *fmv = new std::vector<space::node *>[al->count()];
for (unsigned int f = 0; f < al->count(); f++) {
_ptf[f] = al->get(f)->get_t(0);
fmv[f] = most_visible_unscaled(_ptf[f]);
std::sort(fmv[f].begin(), fmv[f].end());
}
if (tc_multiplier == 0)
al->close_all();
/*
* Open all files for rendering.
*/
d2::image_rw::open_all();
/*
* Prepare data structures for averaging views, as we render
* each view separately. This is spacewise inefficient, but
* is easy to implement given the current operation of the
* renderers.
*/
d2::image_weighted_avg *iwa;
if (d3::focus::uses_medians()) {
iwa = new d2::image_weighted_median(height, width, 3, focus::max_samples());
} else {
iwa = new d2::image_weighted_simple(height, width, 3, new d2::invariant(NULL));
}
_pt.view_angle(_pt.view_angle() * VIEW_ANGLE_MULTIPLIER);
/*
* Prepare view generator.
*/
view_generator vg(_pt);
/*
* Render views separately. This is spacewise inefficient,
* but is easy to implement given the current operation of the
* renderers.
*/
for (unsigned int v = 0; v < focus::max_samples(); v++) {
/*
* Generate a new 2D renderer for filtering.
*/
d2::render::reset();
d2::render *renderer = d2::render_parse::get(d3chain_type);
renderer->init_point_renderer(height, width, 3);
/*
* Iterate over output points.
*/
for (unsigned int i = 0; i < height; i++)
for (unsigned int j = 0; j < width; j++) {
focus::result _focus = focus::get(depths, i, j);
if (v >= _focus.sample_count)
continue;
if (!finite(_focus.focal_distance))
continue;
view_generator::view vw = vg.get_view(_focus.aperture, v, _focus.randomization);
pt _pt_new = vw.get_pt();
point p = _pt_new.wp_scaled(_pt.pw_scaled(point(i, j, _focus.focal_distance)));
/*
* Determine the most-visible subspace.
*/
space::node *mv = vw.get_most_visible(p.xy());
if (mv == NULL)
continue;
/*
* Get median depth and diff.
*/
d2::pixel depth, diff;
vw.get_median_depth_and_diff(&depth, &diff, p.xy());
if (!depth.finite() || !diff.finite())
continue;
point local_points[3] = {
point(p[0], p[1], ale_real_to_pos(depth[0])),
point(p[0] + 1, p[1], ale_real_to_pos(depth[0] + diff[0])),
point(p[0], p[1] + 1, ale_real_to_pos(depth[0] + diff[1]))
};
/*
* Iterate over files.
*/
for (unsigned int f = 0; f < d2::image_rw::count(); f++) {
ui::get()->d3_render_status(1, 1, f, v, i, j, -1);
if (!visibility_search(fmv[f], mv))
continue;
/*
* Determine transformation at (i, j). First
* determine transformation from the output to
* the input, then invert this, as we need the
* inverse transformation for filtering.
*/
d2::point remote_points[3] = {
_ptf[f].wp_unscaled(_pt_new.pw_scaled(point(local_points[0]))).xy(),
_ptf[f].wp_unscaled(_pt_new.pw_scaled(point(local_points[1]))).xy(),
_ptf[f].wp_unscaled(_pt_new.pw_scaled(point(local_points[2]))).xy()
};
/*
* Forward matrix for the linear component of the
* transformation.
*/
d2::point forward_matrix[2] = {
remote_points[1] - remote_points[0],
remote_points[2] - remote_points[0]
};
/*
* Inverse matrix for the linear component of
* the transformation. Calculate using the
* determinant D.
*/
ale_pos D = forward_matrix[0][0] * forward_matrix[1][1]
- forward_matrix[0][1] * forward_matrix[1][0];
if (D == 0)
continue;
d2::point inverse_matrix[2] = {
d2::point( forward_matrix[1][1] / D, -forward_matrix[1][0] / D),
d2::point(-forward_matrix[0][1] / D, forward_matrix[0][0] / D)
};
/*
* Determine the projective transformation parameters for the
* inverse transformation.
*/
const d2::image *imf = d2::image_rw::get_open(f);
d2::transformation inv_t = d2::transformation::gpt_identity(imf, 1);
d2::point local_bounds[4];
for (int n = 0; n < 4; n++) {
d2::point remote_bound = d2::point((n == 1 || n == 2) ? imf->height() : 0,
(n == 2 || n == 3) ? imf->width() : 0)
- remote_points[0];
local_bounds[n] = d2::point(i, j)
+ d2::point(remote_bound[0] * inverse_matrix[0][0]
+ remote_bound[1] * inverse_matrix[1][0],
remote_bound[0] * inverse_matrix[0][1]
+ remote_bound[1] * inverse_matrix[1][1]);
}
if (!local_bounds[0].finite()
|| !local_bounds[1].finite()
|| !local_bounds[2].finite()
|| !local_bounds[3].finite())
continue;
inv_t.gpt_set(local_bounds);
/*
* Perform render step for the given frame,
* transformation, and point.
*/
renderer->point_render(i, j, f, inv_t);
}
}
renderer->finish_point_rendering();
const d2::image *im = renderer->get_image();
const d2::image *df = renderer->get_defined();
for (unsigned int i = 0; i < height; i++)
for (unsigned int j = 0; j < width; j++) {
if (((d2::pixel) df->get_pixel(i, j)).finite()
&& df->get_pixel(i, j)[0] > 0)
iwa->accumulate(i, j, v, im->get_pixel(i, j), d2::pixel(1, 1, 1));
}
}
/*
* Close all files and return the result.
*/
d2::image_rw::close_all();
return iwa;
}
static const d2::image *view_filter(pt _pt, int n) {
if (!focus::is_trivial())
return view_filter_focus(_pt, n);
assert ((unsigned int) n < d2::image_rw::count() || n < 0);
/*
* Generate a new 2D renderer for filtering.
*/
d2::render::reset();
d2::render *renderer = d2::render_parse::get(d3chain_type);
/*
* Get depth image in order to estimate normals (and hence
* transformations).
*/
const d2::image *depths = depth(_pt, n);
d2::image *median_diffs = depths->fcdiff_median((int) floor(diff_median_radius));
d2::image *median_depths = depths->medians((int) floor(depth_median_radius));
unsigned int height = (unsigned int) floor(_pt.scaled_height());
unsigned int width = (unsigned int) floor(_pt.scaled_width());
renderer->init_point_renderer(height, width, 3);
_pt.view_angle(_pt.view_angle() * VIEW_ANGLE_MULTIPLIER);
std::vector<space::node *> mv = most_visible_scaled(_pt);
for (unsigned int f = 0; f < d2::image_rw::count(); f++) {
if (tc_multiplier == 0)
al->open(f);
pt _ptf = al->get(f)->get_t(0);
std::vector<space::node *> fmv = most_visible_unscaled(_ptf);
std::sort(fmv.begin(), fmv.end());
for (unsigned int i = 0; i < height; i++)
for (unsigned int j = 0; j < width; j++) {
ui::get()->d3_render_status(1, 0, f, -1, i, j, -1);
/*
* Check visibility.
*/
int n = i * width + j;
if (!visibility_search(fmv, mv[n]))
continue;
/*
* Find depth and diff at this point, check for
* undefined values, and generate projections
* of the image corners on the estimated normal
* surface.
*/
d2::pixel depth = median_depths->get_pixel(i, j);
d2::pixel diff = median_diffs->get_pixel(i, j);
// d2::pixel diff = d2::pixel(0, 0, 0);
if (!depth.finite() || !diff.finite())
continue;
point local_points[3] = {
point(i, j, ale_real_to_pos(depth[0])),
point(i + 1, j, ale_real_to_pos(depth[0] + diff[0])),
point(i , j + 1, ale_real_to_pos(depth[0] + diff[1]))
};
/*
* Determine transformation at (i, j). First
* determine transformation from the output to
* the input, then invert this, as we need the
* inverse transformation for filtering.
*/
d2::point remote_points[3] = {
_ptf.wp_unscaled(_pt.pw_scaled(point(local_points[0]))).xy(),
_ptf.wp_unscaled(_pt.pw_scaled(point(local_points[1]))).xy(),
_ptf.wp_unscaled(_pt.pw_scaled(point(local_points[2]))).xy()
};
/*
* Forward matrix for the linear component of the
* transformation.
*/
d2::point forward_matrix[2] = {
remote_points[1] - remote_points[0],
remote_points[2] - remote_points[0]
};
/*
* Inverse matrix for the linear component of
* the transformation. Calculate using the
* determinant D.
*/
ale_pos D = forward_matrix[0][0] * forward_matrix[1][1]
- forward_matrix[0][1] * forward_matrix[1][0];
if (D == 0)
continue;
d2::point inverse_matrix[2] = {
d2::point( forward_matrix[1][1] / D, -forward_matrix[1][0] / D),
d2::point(-forward_matrix[0][1] / D, forward_matrix[0][0] / D)
};
/*
* Determine the projective transformation parameters for the
* inverse transformation.
*/
const d2::image *imf = d2::image_rw::open(f);
d2::transformation inv_t = d2::transformation::gpt_identity(imf, 1);
d2::point local_bounds[4];
for (int n = 0; n < 4; n++) {
d2::point remote_bound = d2::point((n == 1 || n == 2) ? imf->height() : 0,
(n == 2 || n == 3) ? imf->width() : 0)
- remote_points[0];
local_bounds[n] = local_points[0].xy()
+ d2::point(remote_bound[0] * inverse_matrix[0][0]
+ remote_bound[1] * inverse_matrix[1][0],
remote_bound[0] * inverse_matrix[0][1]
+ remote_bound[1] * inverse_matrix[1][1]);
}
inv_t.gpt_set(local_bounds);
d2::image_rw::close(f);
/*
* Perform render step for the given frame,
* transformation, and point.
*/
d2::image_rw::open(f);
renderer->point_render(i, j, f, inv_t);
d2::image_rw::close(f);
}
if (tc_multiplier == 0)
al->close(f);
}
renderer->finish_point_rendering();
return renderer->get_image();
}
/*
* Generic function.
*/
static const d2::image *view(pt _pt, int n = -1) {
assert ((unsigned int) n < d2::image_rw::count() || n < 0);
if (use_filter) {
return view_filter(_pt, n);
} else {
return view_nofilter(_pt, n);
}
}
static void tcem(double _tcem) {
tc_multiplier = _tcem;
}
static void oui(unsigned int _oui) {
ou_iterations = _oui;
}
static void pa(unsigned int _pa) {
pairwise_ambiguity = _pa;
}
static void pc(const char *_pc) {
pairwise_comparisons = _pc;
}
static void d3px(int _d3px_count, double *_d3px_parameters) {
d3px_count = _d3px_count;
d3px_parameters = _d3px_parameters;
}
static void fx(double _fx) {
falloff_exponent = _fx;
}
static void nw() {
normalize_weights = 1;
}
static void no_nw() {
normalize_weights = 0;
}
static void nofilter() {
use_filter = 0;
}
static void filter() {
use_filter = 1;
}
static void set_filter_type(const char *type) {
d3chain_type = type;
}
static void set_subspace_traverse() {
subspace_traverse = 1;
}
static int excluded(point p) {
for (int n = 0; n < d3px_count; n++) {
double *region = d3px_parameters + (6 * n);
if (p[0] >= region[0]
&& p[0] <= region[1]
&& p[1] >= region[2]
&& p[1] <= region[3]
&& p[2] >= region[4]
&& p[2] <= region[5])
return 1;
}
return 0;
}
/*
* This function returns true if a space is completely excluded.
*/
static int excluded(const space::traverse &st) {
for (int n = 0; n < d3px_count; n++) {
double *region = d3px_parameters + (6 * n);
if (st.get_min()[0] >= region[0]
&& st.get_max()[0] <= region[1]
&& st.get_min()[1] >= region[2]
&& st.get_max()[1] <= region[3]
&& st.get_min()[2] >= region[4]
&& st.get_max()[2] <= region[5])
return 1;
}
return 0;
}
static const d2::image *view(unsigned int n) {
assert (n < d2::image_rw::count());
pt _pt = align::projective(n);
return view(_pt, n);
}
typedef struct {point iw; point ip, is;} analytic;
typedef std::multimap<ale_real,analytic> score_map;
typedef std::pair<ale_real,analytic> score_map_element;
/*
* Make pt list.
*/
static std::vector<pt> make_pt_list(const char *d_out[], const char *v_out[],
std::map<const char *, pt> *d3_depth_pt,
std::map<const char *, pt> *d3_output_pt) {
std::vector<pt> result;
for (unsigned int n = 0; n < d2::image_rw::count(); n++) {
if (d_out[n] || v_out[n]) {
result.push_back(align::projective(n));
}
}
for (std::map<const char *, pt>::iterator i = d3_depth_pt->begin(); i != d3_depth_pt->end(); i++) {
result.push_back(i->second);
}
for (std::map<const char *, pt>::iterator i = d3_output_pt->begin(); i != d3_output_pt->end(); i++) {
result.push_back(i->second);
}
return result;
}
/*
* Get a trilinear coordinate for an anisotropic candidate cell.
*/
static ale_pos get_trilinear_coordinate(point min, point max, pt _pt) {
d2::point local_min, local_max;
local_min = _pt.wp_unscaled(min).xy();
local_max = _pt.wp_unscaled(min).xy();
point cell[2] = {min, max};
/*
* Determine the view-local extrema in 2 dimensions.
*/
for (int r = 1; r < 8; r++) {
point local = _pt.wp_unscaled(point(cell[r>>2][0], cell[(r>>1)%2][1], cell[r%2][2]));
for (int d = 0; d < 2; d++) {
if (local[d] < local_min[d])
local_min[d] = local[d];
if (local[d] > local_max[d])
local_max[d] = local[d];
if (isnan(local[d]))
return local[d];
}
}
ale_pos diameter = (local_max - local_min).norm();
return log((double) diameter / sqrt(2)) / log(2);
}
/*
* Check whether a cell is visible from a given viewpoint. This function
* is guaranteed to return 1 when a cell is visible, but it is not guaranteed
* to return 0 when a cell is invisible.
*/
static int pt_might_be_visible(const pt &viewpoint, point min, point max) {
int doc = (rand() % 100000) ? 0 : 1;
if (doc)
fprintf(stderr, "checking visibility:\n");
point cell[2] = {min, max};
/*
* Cycle through all vertices of the cell to check certain
* properties.
*/
int pos[3] = {0, 0, 0};
int neg[3] = {0, 0, 0};
for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++)
for (int k = 0; k < 2; k++) {
point p = viewpoint.wp_unscaled(point(cell[i][0], cell[j][1], cell[k][2]));
if (p[2] < 0 && viewpoint.unscaled_in_bounds(p))
return 1;
if (isnan(p[0])
|| isnan(p[1])
|| isnan(p[2]))
return 1;
if (p[2] > 0)
for (int d = 0; d < 2; d++)
p[d] *= -1;
if (doc)
fprintf(stderr, "\t[%f %f %f] --> [%f %f %f]\n",
(double) cell[i][0], (double) cell[j][1], (double) cell[k][2],
(double) p[0], (double) p[1], (double) p[2]);
for (int d = 0; d < 3; d++)
if (p[d] >= 0)
pos[d] = 1;
if (p[0] <= viewpoint.unscaled_height() - 1)
neg[0] = 1;
if (p[1] <= viewpoint.unscaled_width() - 1)
neg[1] = 1;
if (p[2] <= 0)
neg[2] = 1;
}
if (!neg[2])
return 0;
if (!pos[0]
|| !neg[0]
|| !pos[1]
|| !neg[1])
return 0;
return 1;
}
/*
* Check whether a cell is output-visible.
*/
static int output_might_be_visible(const std::vector<pt> &pt_outputs, point min, point max) {
for (unsigned int n = 0; n < pt_outputs.size(); n++)
if (pt_might_be_visible(pt_outputs[n], min, max))
return 1;
return 0;
}
/*
* Check whether a cell is input-visible.
*/
static int input_might_be_visible(unsigned int f, point min, point max) {
return pt_might_be_visible(align::projective(f), min, max);
}
/*
* Return true if a cell fails an output resolution bound.
*/
static int fails_output_resolution_bound(point min, point max, const std::vector<pt> &pt_outputs) {
for (unsigned int n = 0; n < pt_outputs.size(); n++) {
point p = pt_outputs[n].centroid(min, max);
if (!p.defined())
continue;
if (get_trilinear_coordinate(min, max, pt_outputs[n]) < output_decimation_preferred)
return 1;
}
return 0;
}
/*
* Check lower-bound resolution constraints
*/
static int exceeds_resolution_lower_bounds(unsigned int f1, unsigned int f2,
point min, point max, const std::vector<pt> &pt_outputs) {
pt _pt = al->get(f1)->get_t(0);
if (get_trilinear_coordinate(min, max, _pt) < input_decimation_lower)
return 1;
if (fails_output_resolution_bound(min, max, pt_outputs))
return 0;
if (get_trilinear_coordinate(min, max, _pt) < primary_decimation_upper)
return 1;
return 0;
}
/*
* Try the candidate nearest to the specified cell.
*/
static void try_nearest_candidate(unsigned int f1, unsigned int f2, candidates *c, point min, point max) {
point centroid = (max + min) / 2;
pt _pt[2] = { al->get(f1)->get_t(0), al->get(f2)->get_t(0) };
point p[2];
// fprintf(stderr, "[tnc n=%f %f %f x=%f %f %f]\n", min[0], min[1], min[2], max[0], max[1], max[2]);
/*
* Reject clipping plane violations.
*/
if (centroid[2] > front_clip
|| centroid[2] < rear_clip)
return;
/*
* Calculate projections.
*/
for (int n = 0; n < 2; n++) {
p[n] = _pt[n].wp_unscaled(centroid);
if (!_pt[n].unscaled_in_bounds(p[n]))
return;
// fprintf(stderr, ":");
if (p[n][2] >= 0)
return;
}
int tc = (int) round(get_trilinear_coordinate(min, max, _pt[0]));
int stc = (int) round(get_trilinear_coordinate(min, max, _pt[1]));
while (tc < input_decimation_lower || stc < input_decimation_lower) {
tc++;
stc++;
}
if (tc > primary_decimation_upper)
return;
/*
* Calculate score from color match. Assume for now
* that the transformation can be approximated locally
* with a translation.
*/
ale_pos score = 0;
ale_pos divisor = 0;
ale_real l1_multiplier = 0.125;
lod_image *if1 = al->get(f1);
lod_image *if2 = al->get(f2);
if (if1->in_bounds(p[0].xy())
&& if2->in_bounds(p[1].xy())) {
divisor += ale_real_to_pos(1 - l1_multiplier);
score += ale_real_to_pos((1 - l1_multiplier)
* (if1->get_tl(p[0].xy(), tc) - if2->get_tl(p[1].xy(), stc)).normsq());
}
for (int iii = -1; iii <= 1; iii++)
for (int jjj = -1; jjj <= 1; jjj++) {
d2::point t(iii, jjj);
if (!if1->in_bounds(p[0].xy() + t)
|| !if2->in_bounds(p[1].xy() + t))
continue;
divisor += ale_real_to_pos(l1_multiplier);
score += ale_real_to_pos(l1_multiplier
* (if1->get_tl(p[0].xy() + t, tc) - if2->get_tl(p[1].xy() + t, tc)).normsq());
}
/*
* Include third-camera contributions in the score.
*/
if (tc_multiplier != 0)
for (unsigned int n = 0; n < d2::image_rw::count(); n++) {
if (n == f1 || n == f2)
continue;
lod_image *ifn = al->get(n);
pt _ptn = ifn->get_t(0);
point pn = _ptn.wp_unscaled(centroid);
if (!_ptn.unscaled_in_bounds(pn))
continue;
if (pn[2] >= 0)
continue;
ale_pos ttc = get_trilinear_coordinate(min, max, _ptn);
divisor += tc_multiplier;
score += tc_multiplier
* (if1->get_tl(p[0].xy(), tc) - ifn->get_tl(pn.xy(), ttc)).normsq();
}
c->add_candidate(p[0], tc, score / divisor);
}
/*
* Check for cells that are completely clipped.
*/
static int completely_clipped(point min, point max) {
return (min[2] > front_clip
|| max[2] < rear_clip);
}
/*
* Update extremum variables for cell points mapped to a particular view.
*/
static void update_extrema(point min, point max, pt _pt, int *extreme_dim, ale_pos *extreme_ratio) {
point local_min, local_max;
local_min = _pt.wp_unscaled(min);
local_max = _pt.wp_unscaled(min);
point cell[2] = {min, max};
int near_vertex = 0;
/*
* Determine the view-local extrema in all dimensions, and
* determine the vertex of closest z coordinate.
*/
for (int r = 1; r < 8; r++) {
point local = _pt.wp_unscaled(point(cell[r>>2][0], cell[(r>>1)%2][1], cell[r%2][2]));
for (int d = 0; d < 3; d++) {
if (local[d] < local_min[d])
local_min[d] = local[d];
if (local[d] > local_max[d])
local_max[d] = local[d];
}
if (local[2] == local_max[2])
near_vertex = r;
}
ale_pos diameter = (local_max.xy() - local_min.xy()).norm();
/*
* Update extrema as necessary for each dimension.
*/
for (int d = 0; d < 3; d++) {
int r = near_vertex;
int p1[3] = {r>>2, (r>>1)%2, r%2};
int p2[3] = {r>>2, (r>>1)%2, r%2};
p2[d] = 1 - p2[d];
ale_pos local_distance = (_pt.wp_unscaled(point(cell[p1[0]][0], cell[p1[1]][1], cell[p1[2]][2])).xy()
- _pt.wp_unscaled(point(cell[p2[0]][0], cell[p2[1]][1], cell[p2[2]][2])).xy()).norm();
if (local_distance / diameter > *extreme_ratio) {
*extreme_ratio = local_distance / diameter;
*extreme_dim = d;
}
}
}
/*
* Get the next split dimension.
*/
static int get_next_split(int f1, int f2, point min, point max, const std::vector<pt> &pt_outputs) {
for (int d = 0; d < 3; d++)
if (isinf(min[d]) || isinf(max[d]))
return space::traverse::get_next_split(min, max);
int extreme_dim = 0;
ale_pos extreme_ratio = 0;
update_extrema(min, max, al->get(f1)->get_t(0), &extreme_dim, &extreme_ratio);
update_extrema(min, max, al->get(f2)->get_t(0), &extreme_dim, &extreme_ratio);
for (unsigned int n = 0; n < pt_outputs.size(); n++) {
update_extrema(min, max, pt_outputs[n], &extreme_dim, &extreme_ratio);
}
return extreme_dim;
}
/*
* Find candidates for subspace creation.
*/
static void find_candidates(unsigned int f1, unsigned int f2, candidates *c, point min, point max,
const std::vector<pt> &pt_outputs, int depth = 0) {
int print = 0;
if (min[0] < 20.0001 && max[0] > 20.0001
&& min[1] < 20.0001 && max[1] > 20.0001
&& min[2] < 0.0001 && max[2] > 0.0001)
print = 1;
if (print) {
for (int i = depth; i > 0; i--) {
fprintf(stderr, "+");
}
fprintf(stderr, "[fc n=%f %f %f x=%f %f %f]\n",
(double) min[0], (double) min[1], (double) min[2], (double) max[0], (double) max[1], (double) max[2]);
}
if (completely_clipped(min, max)) {
if (print)
fprintf(stderr, "c");
return;
}
if (!input_might_be_visible(f1, min, max)
|| !input_might_be_visible(f2, min, max)) {
if (print)
fprintf(stderr, "v");
return;
}
if (output_clip && !output_might_be_visible(pt_outputs, min, max)) {
if (print)
fprintf(stderr, "o");
return;
}
if (exceeds_resolution_lower_bounds(f1, f2, min, max, pt_outputs)) {
if (!(rand() % 100000))
fprintf(stderr, "([%f %f %f], [%f %f %f]) at %d\n",
(double) min[0], (double) min[1], (double) min[2],
(double) max[0], (double) max[1], (double) max[2],
__LINE__);
if (print)
fprintf(stderr, "t");
try_nearest_candidate(f1, f2, c, min, max);
return;
}
point new_cells[2][2];
if (!space::traverse::get_next_cells(get_next_split(f1, f2, min, max, pt_outputs), min, max, new_cells)) {
if (print)
fprintf(stderr, "n");
return;
}
if (print) {
fprintf(stderr, "nc[0][0]=%f %f %f nc[0][1]=%f %f %f nc[1][0]=%f %f %f nc[1][1]=%f %f %f\n",
(double) new_cells[0][0][0],
(double) new_cells[0][0][1],
(double) new_cells[0][0][2],
(double) new_cells[0][1][0],
(double) new_cells[0][1][1],
(double) new_cells[0][1][2],
(double) new_cells[1][0][0],
(double) new_cells[1][0][1],
(double) new_cells[1][0][2],
(double) new_cells[1][1][0],
(double) new_cells[1][1][1],
(double) new_cells[1][1][2]);
}
find_candidates(f1, f2, c, new_cells[0][0], new_cells[0][1], pt_outputs, depth + 1);
find_candidates(f1, f2, c, new_cells[1][0], new_cells[1][1], pt_outputs, depth + 1);
}
/*
* Generate a map from scores to 3D points for various depths at point (i, j) in f1, at
* lowest resolution.
*/
static score_map p2f_score_map(unsigned int f1, unsigned int f2, unsigned int i, unsigned int j) {
score_map result;
pt _pt1 = al->get(f1)->get_t(primary_decimation_upper);
pt _pt2 = al->get(f2)->get_t(primary_decimation_upper);
const d2::image *if1 = al->get(f1)->get_image(primary_decimation_upper);
const d2::image *if2 = al->get(f2)->get_image(primary_decimation_upper);
ale_pos pdu_scale = pow(2, primary_decimation_upper);
/*
* Get the pixel color in the primary frame
*/
// d2::pixel color_primary = if1->get_pixel(i, j);
/*
* Map two depths to the secondary frame.
*/
point p1 = _pt2.wp_unscaled(_pt1.pw_unscaled(point(i, j, 1000)));
point p2 = _pt2.wp_unscaled(_pt1.pw_unscaled(point(i, j, -1000)));
// fprintf(stderr, "%d->%d (%d, %d) point pair: (%d, %d, %d -> %f, %f), (%d, %d, %d -> %f, %f)\n",
// f1, f2, i, j, i, j, 1000, p1[0], p1[1], i, j, -1000, p2[0], p2[1]);
// _pt1.debug_output();
// _pt2.debug_output();
/*
* For cases where the mapped points define a
* line and where points on the line fall
* within the defined area of the frame,
* determine the starting point for inspection.
* In other cases, continue to the next pixel.
*/
ale_pos diff_i = p2[0] - p1[0];
ale_pos diff_j = p2[1] - p1[1];
ale_pos slope = diff_j / diff_i;
if (isnan(slope)) {
assert(0);
fprintf(stderr, "%d->%d (%d, %d) has undefined slope\n",
f1, f2, i, j);
return result;
}
/*
* Make absurdly large/small slopes either infinity, negative infinity, or zero.
*/
if (fabs(slope) > if2->width() * 100) {
double zero = 0;
double one = 1;
double inf = one / zero;
slope = inf;
} else if (slope < 1 / (double) if2->height() / 100
&& slope > -1/ (double) if2->height() / 100) {
slope = 0;
}
// fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
ale_pos top_intersect = p1[1] - p1[0] * slope;
ale_pos lef_intersect = p1[0] - p1[1] / slope;
ale_pos rig_intersect = p1[0] - (p1[1] - if2->width() + 2) / slope;
ale_pos sp_i, sp_j;
// fprintf(stderr, "slope == %f\n", slope);
if (slope == 0) {
// fprintf(stderr, "case 0\n");
sp_i = lef_intersect;
sp_j = 0;
} else if (finite(slope) && top_intersect >= 0 && top_intersect < if2->width() - 1) {
// fprintf(stderr, "case 1\n");
sp_i = 0;
sp_j = top_intersect;
} else if (slope > 0 && lef_intersect >= 0 && lef_intersect <= if2->height() - 1) {
// fprintf(stderr, "case 2\n");
sp_i = lef_intersect;
sp_j = 0;
} else if (slope < 0 && rig_intersect >= 0 && rig_intersect <= if2->height() - 1) {
// fprintf(stderr, "case 3\n");
sp_i = rig_intersect;
sp_j = if2->width() - 2;
} else {
// fprintf(stderr, "case 4\n");
// fprintf(stderr, "%d->%d (%d, %d) does not intersect the defined area\n",
// f1, f2, i, j);
return result;
}
// fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
/*
* Determine increment values for examining
* point, ensuring that incr_i is always
* positive.
*/
ale_pos incr_i, incr_j;
if (fabs(diff_i) > fabs(diff_j)) {
incr_i = 1;
incr_j = slope;
} else if (slope > 0) {
incr_i = 1 / slope;
incr_j = 1;
} else {
incr_i = -1 / slope;
incr_j = -1;
}
// fprintf(stderr, "%d->%d (%d, %d) increments are (%f, %f)\n",
// f1, f2, i, j, incr_i, incr_j);
/*
* Examine regions near the projected line.
*/
for (ale_pos ii = sp_i, jj = sp_j;
ii <= if2->height() - 1 && jj <= if2->width() - 1 && ii >= 0 && jj >= 0;
ii += incr_i, jj += incr_j) {
// fprintf(stderr, "%d->%d (%d, %d) checking (%f, %f)\n",
// f1, f2, i, j, ii, jj);
#if 0
/*
* Check for higher, lower, and nearby points.
*
* Red = 2^0
* Green = 2^1
* Blue = 2^2
*/
int higher = 0, lower = 0, nearby = 0;
for (int iii = 0; iii < 2; iii++)
for (int jjj = 0; jjj < 2; jjj++) {
d2::pixel p = if2->get_pixel((int) floor(ii) + iii, (int) floor(jj) + jjj);
for (int k = 0; k < 3; k++) {
int bitmask = (int) pow(2, k);
if (p[k] > color_primary[k])
higher |= bitmask;
if (p[k] < color_primary[k])
lower |= bitmask;
if (fabs(p[k] - color_primary[k]) < nearness)
nearby |= bitmask;
}
}
/*
* If this is not a region of interest,
* then continue.
*/
fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
// if (((higher & lower) | nearby) != 0x7)
// continue;
#endif
// fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
// fprintf(stderr, "%d->%d (%d, %d) accepted (%f, %f)\n",
// f1, f2, i, j, ii, jj);
/*
* Create an orthonormal basis to
* determine line intersection.
*/
point bp0 = _pt1.pw_unscaled(point(i, j, 0));
point bp1 = _pt1.pw_unscaled(point(i, j, 10));
point bp2 = _pt2.pw_unscaled(point(ii, jj, 0));
point foo = _pt1.wp_unscaled(bp0);
// fprintf(stderr, "(%d, %d, 0) transformed to world and back is: (%f, %f, %f)\n",
// i, j, foo[0], foo[1], foo[2]);
foo = _pt1.wp_unscaled(bp1);
// fprintf(stderr, "(%d, %d, 10) transformed to world and back is: (%f, %f, %f)\n",
// i, j, foo[0], foo[1], foo[2]);
point b0 = (bp1 - bp0).normalize();
point b1n = bp2 - bp0;
point b1 = (b1n - b1n.dproduct(b0) * b0).normalize();
point b2 = point(0, 0, 0).xproduct(b0, b1).normalize(); // Should already have norm=1
foo = _pt1.wp_unscaled(bp0 + 30 * b0);
/*
* Select a fourth point to define a second line.
*/
point p3 = _pt2.pw_unscaled(point(ii, jj, 10));
/*
* Representation in the new basis.
*/
d2::point nbp0 = d2::point(bp0.dproduct(b0), bp0.dproduct(b1));
// d2::point nbp1 = d2::point(bp1.dproduct(b0), bp1.dproduct(b1));
d2::point nbp2 = d2::point(bp2.dproduct(b0), bp2.dproduct(b1));
d2::point np3 = d2::point( p3.dproduct(b0), p3.dproduct(b1));
/*
* Determine intersection of line
* (nbp0, nbp1), which is parallel to
* b0, with line (nbp2, np3).
*/
/*
* XXX: a stronger check would be
* better here, e.g., involving the
* ratio (np3[0] - nbp2[0]) / (np3[1] -
* nbp2[1]). Also, acceptance of these
* cases is probably better than
* rejection.
*/
// fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
if (np3[1] - nbp2[1] == 0)
continue;
// fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
d2::point intersection = d2::point(nbp2[0]
+ (nbp0[1] - nbp2[1]) * (np3[0] - nbp2[0]) / (np3[1] - nbp2[1]),
nbp0[1]);
ale_pos b2_offset = b2.dproduct(bp0);
/*
* Map the intersection back to the world
* basis.
*/
point iw = intersection[0] * b0 + intersection[1] * b1 + b2_offset * b2;
/*
* Reject intersection points behind a
* camera.
*/
point icp = _pt1.wc(iw);
point ics = _pt2.wc(iw);
// fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
if (icp[2] >= 0 || ics[2] >= 0)
continue;
// fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
/*
* Reject clipping plane violations.
*/
// fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
if (iw[2] > front_clip
|| iw[2] < rear_clip)
continue;
// fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
/*
* Score the point.
*/
point ip = _pt1.wp_unscaled(iw);
point is = _pt2.wp_unscaled(iw);
analytic _a = { iw, ip, is };
/*
* Calculate score from color match. Assume for now
* that the transformation can be approximated locally
* with a translation.
*/
ale_pos score = 0;
ale_pos divisor = 0;
ale_pos l1_multiplier = 0.125;
if (if1->in_bounds(ip.xy())
&& if2->in_bounds(is.xy())
&& !d2::render::is_excluded_f(ip.xy() * pdu_scale, f1)
&& !d2::render::is_excluded_f(is.xy() * pdu_scale, f2)) {
divisor += 1 - l1_multiplier;
score += (1 - l1_multiplier)
* (ale_pos) ((if1->get_bl(ip.xy()) - if2->get_bl(is.xy())).normsq());
}
// fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
for (int iii = -1; iii <= 1; iii++)
for (int jjj = -1; jjj <= 1; jjj++) {
d2::point t(iii, jjj);
if (!if1->in_bounds(ip.xy() + t)
|| !if2->in_bounds(is.xy() + t)
|| d2::render::is_excluded_f(ip.xy() * pdu_scale, f1)
|| d2::render::is_excluded_f(is.xy() * pdu_scale, f2))
continue;
divisor += l1_multiplier;
score += l1_multiplier
* (ale_pos) ((if1->get_bl(ip.xy() + t) - if2->get_bl(is.xy() + t)).normsq());
}
/*
* Include third-camera contributions in the score.
*/
if (tc_multiplier != 0)
for (unsigned int f = 0; f < d2::image_rw::count(); f++) {
if (f == f1 || f == f2)
continue;
const d2::image *if3 = al->get(f)->get_image(primary_decimation_upper);
pt _pt3 = al->get(f)->get_t(primary_decimation_upper);
point p = _pt3.wp_unscaled(iw);
if (!if3->in_bounds(p.xy())
|| !if1->in_bounds(ip.xy())
|| d2::render::is_excluded_f(p.xy() * pdu_scale, f)
|| d2::render::is_excluded_f(ip.xy() * pdu_scale, f1))
continue;
divisor += tc_multiplier;
score += tc_multiplier
* (if1->get_bl(ip.xy()) - if3->get_bl(p.xy())).normsq();
}
// fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
/*
* Reject points with undefined score.
*/
// fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
if (!finite(score / divisor))
continue;
// fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
#if 0
/*
* XXX: reject points not on the z=-27.882252 plane.
*/
// fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
if (_a.ip[2] > -27 || _a.ip[2] < -28)
continue;
#endif
// fprintf(stderr, "score map (%u, %u) line %u\n", i, j, __LINE__);
/*
* Add the point to the score map.
*/
// d2::pixel c_ip = if1->in_bounds(ip.xy()) ? if1->get_bl(ip.xy())
// : d2::pixel();
// d2::pixel c_is = if2->in_bounds(is.xy()) ? if2->get_bl(is.xy())
// : d2::pixel();
// fprintf(stderr, "Candidate subspace: f1=%u f2=%u i=%u j=%u ii=%f jj=%f"
// "cp=[%f %f %f] cs=[%f %f %f]\n",
// f1, f2, i, j, ii, jj, c_ip[0], c_ip[1], c_ip[2],
// c_is[0], c_is[1], c_is[2]);
result.insert(score_map_element(score / divisor, _a));
}
// fprintf(stderr, "Iterating through the score map:\n");
//
// for (score_map::iterator smi = result.begin(); smi != result.end(); smi++) {
// fprintf(stderr, "%f ", smi->first);
// }
//
// fprintf(stderr, "\n");
return result;
}
/*
* Attempt to refine space around a point, to high and low resolutions
* resulting in two resolutions in total.
*/
static space::traverse refine_space(point iw, ale_pos target_dim, int use_filler) {
space::traverse st = space::traverse::root();
if (!st.includes(iw)) {
assert(0);
return st;
}
int lr_done = !use_filler;
/*
* Loop until all resolutions of interest have been generated.
*/
for(;;) {
point p[2] = { st.get_min(), st.get_max() };
ale_pos dim_max = 0;
for (int d = 0; d < 3; d++) {
ale_pos d_value = fabs(p[0][d] - p[1][d]);
if (d_value > dim_max)
dim_max = d_value;
}
/*
* Generate any new desired spatial registers.
*/
for (int f = 0; f < 2; f++) {
/*
* Low resolution
*/
if (dim_max < 2 * target_dim
&& lr_done == 0) {
if (spatial_info_map.find(st.get_node()) == spatial_info_map.end()) {
spatial_info_map[st.get_node()];
ui::get()->d3_increment_spaces();
}
lr_done = 1;
}
/*
* High resolution.
*/
if (dim_max < target_dim) {
if (spatial_info_map.find(st.get_node()) == spatial_info_map.end()) {
spatial_info_map[st.get_node()];
ui::get()->d3_increment_spaces();
}
return st;
}
}
/*
* Check precision before analyzing space further.
*/
if (st.precision_wall()) {
fprintf(stderr, "\n\n*** Error: reached subspace precision wall ***\n\n");
assert(0);
return st;
}
if (st.positive().includes(iw)) {
st = st.positive();
total_tsteps++;
} else if (st.negative().includes(iw)) {
st = st.negative();
total_tsteps++;
} else {
fprintf(stderr, "failed iw = (%f, %f, %f)\n",
(double) iw[0], (double) iw[1], (double) iw[2]);
assert(0);
}
}
}
/*
* Calculate target dimension
*/
static ale_pos calc_target_dim(point iw, pt _pt, const char *d_out[], const char *v_out[],
std::map<const char *, pt> *d3_depth_pt,
std::map<const char *, pt> *d3_output_pt) {
ale_pos result = _pt.distance_1d(iw, primary_decimation_upper);
for (unsigned int n = 0; n < d2::image_rw::count(); n++) {
if (d_out[n] && align::projective(n).distance_1d(iw, 0) < result)
result = align::projective(n).distance_1d(iw, 0);
if (v_out[n] && align::projective(n).distance_1d(iw, 0) < result)
result = align::projective(n).distance_1d(iw, 0);
}
for (std::map<const char *, pt>::iterator i = d3_output_pt->begin(); i != d3_output_pt->end(); i++) {
if (i->second.distance_1d(iw, 0) < result)
result = i->second.distance_1d(iw, 0);
}
for (std::map<const char *, pt>::iterator i = d3_depth_pt->begin(); i != d3_depth_pt->end(); i++) {
if (i->second.distance_1d(iw, 0) < result)
result = i->second.distance_1d(iw, 0);
}
assert (result > 0);
return result;
}
/*
* Calculate level of detail for a given viewpoint.
*/
static int calc_lod(ale_pos depth1, pt _pt, ale_pos target_dim) {
return (int) round(_pt.trilinear_coordinate(depth1, target_dim * (ale_pos) sqrt(2)));
}
/*
* Calculate depth range for a given pair of viewpoints.
*/
static ale_pos calc_depth_range(point iw, pt _pt1, pt _pt2) {
point ip = _pt1.wp_unscaled(iw);
ale_pos reference_change = fabs(ip[2] / 1000);
point iw1 = _pt1.pw_scaled(ip + point(0, 0, reference_change));
point iw2 = _pt1.pw_scaled(ip - point(0, 0, reference_change));
point is = _pt2.wc(iw);
point is1 = _pt2.wc(iw1);
point is2 = _pt2.wc(iw2);
assert(is[2] < 0);
ale_pos d1 = (is1.xy() - is.xy()).norm();
ale_pos d2 = (is2.xy() - is.xy()).norm();
// assert (reference_change > 0);
// assert (d1 > 0 || d2 > 0);
if (is1[2] < 0 && is2[2] < 0) {
if (d1 > d2)
return reference_change / d1;
else
return reference_change / d2;
}
if (is1[2] < 0)
return reference_change / d1;
if (is2[2] < 0)
return reference_change / d2;
return 0;
}
/*
* Calculate a refined point for a given set of parameters.
*/
static point get_refined_point(pt _pt1, pt _pt2, int i, int j,
int f1, int f2, int lod1, int lod2, ale_pos depth,
ale_pos depth_range) {
d2::pixel comparison_color = al->get(f1)->get_image(lod1)->get_pixel(i, j);
ale_pos best = -1;
ale_pos best_depth = depth;
assert (depth_range > 0);
if (fabs(depth_range) < fabs(depth / 10000))
return _pt1.pw_unscaled(point(i, j, depth));
for (ale_pos d = depth - depth_range; d < depth + depth_range; d += depth_range / 10) {
if (!(d < 0))
continue;
point iw = _pt1.pw_unscaled(point(i, j, d));
point is = _pt2.wp_unscaled(iw);
if (!(is[2] < 0))
continue;
if (!al->get(f2)->get_image(lod2)->in_bounds(is.xy()))
continue;
ale_pos error = (comparison_color - al->get(f2)->get_image(lod2)->get_bl(is.xy())).norm();
if (error < best || best == -1) {
best = error;
best_depth = d;
}
}
return _pt1.pw_unscaled(point(i, j, best_depth));
}
/*
* Analyze space in a manner dependent on the score map.
*/
static void analyze_space_from_map(const char *d_out[], const char *v_out[],
std::map<const char *, pt> *d3_depth_pt,
std::map<const char *, pt> *d3_output_pt,
unsigned int f1, unsigned int f2,
unsigned int i, unsigned int j, score_map _sm, int use_filler) {
int accumulated_ambiguity = 0;
int max_acc_amb = pairwise_ambiguity;
pt _pt1 = al->get(f1)->get_t(0);
pt _pt2 = al->get(f2)->get_t(0);
if (_pt1.scale_2d() != 1)
use_filler = 1;
for(score_map::iterator smi = _sm.begin(); smi != _sm.end(); smi++) {
point iw = smi->second.iw;
if (accumulated_ambiguity++ >= max_acc_amb)
break;
total_ambiguity++;
ale_pos depth1 = _pt1.wc(iw)[2];
ale_pos depth2 = _pt2.wc(iw)[2];
ale_pos target_dim = calc_target_dim(iw, _pt1, d_out, v_out, d3_depth_pt, d3_output_pt);
assert(target_dim > 0);
int lod1 = calc_lod(depth1, _pt1, target_dim);
int lod2 = calc_lod(depth2, _pt2, target_dim);
while (lod1 < input_decimation_lower
|| lod2 < input_decimation_lower) {
target_dim *= 2;
lod1 = calc_lod(depth1, _pt1, target_dim);
lod2 = calc_lod(depth2, _pt2, target_dim);
}
if (lod1 >= (int) al->get(f1)->count()
|| lod2 >= (int) al->get(f2)->count())
continue;
int multiplier = (unsigned int) floor(pow(2, primary_decimation_upper - lod1));
ale_pos depth_range = calc_depth_range(iw, _pt1, _pt2);
assert (depth_range > 0);
pt _pt1_lod = al->get(f1)->get_t(lod1);
pt _pt2_lod = al->get(f2)->get_t(lod2);
int im = i * multiplier;
int jm = j * multiplier;
for (int ii = 0; ii < multiplier; ii += 1)
for (int jj = 0; jj < multiplier; jj += 1) {
point refined_point = get_refined_point(_pt1_lod, _pt2_lod, im + ii, jm + jj,
f1, f2, lod1, lod2, depth1, depth_range);
/*
* Re-evaluate target dimension.
*/
ale_pos target_dim_ =
calc_target_dim(refined_point, _pt1, d_out, v_out, d3_depth_pt, d3_output_pt);
ale_pos depth1_ = _pt1.wc(refined_point)[2];
ale_pos depth2_ = _pt2.wc(refined_point)[2];
int lod1_ = calc_lod(depth1_, _pt1, target_dim_);
int lod2_ = calc_lod(depth2_, _pt2, target_dim_);
while (lod1_ < input_decimation_lower
|| lod2_ < input_decimation_lower) {
target_dim_ *= 2;
lod1_ = calc_lod(depth1_, _pt1, target_dim_);
lod2_ = calc_lod(depth2_, _pt2, target_dim_);
}
/*
* Attempt to refine space around the intersection point.
*/
space::traverse st =
refine_space(refined_point, target_dim_, use_filler || _pt1.scale_2d() != 1);
// if (!resolution_ok(al->get(f1)->get_t(0), al->get(f1)->get_t(0).trilinear_coordinate(st))) {
// pt transformation = al->get(f1)->get_t(0);
// ale_pos tc = al->get(f1)->get_t(0).trilinear_coordinate(st);
//
// fprintf(stderr, "Resolution not ok.\n");
// fprintf(stderr, "pow(2, tc)=%f\n", pow(2, tc));
// fprintf(stderr, "transformation.unscaled_height()=%f\n",
// transformation.unscaled_height());
// fprintf(stderr, "transformation.unscaled_width()=%f\n",
// transformation.unscaled_width());
// fprintf(stderr, "tc=%f", tc);
// fprintf(stderr, "input_decimation_lower - 1.5 = %f\n",
// input_decimation_lower - 1.5);
//
// }
//
// assert(resolution_ok(al->get(f1)->get_t(0), al->get(f1)->get_t(0).trilinear_coordinate(st)));
// assert(resolution_ok(al->get(f2)->get_t(0), al->get(f2)->get_t(0).trilinear_coordinate(st)));
}
}
}
/*
* Initialize space and identify regions of interest for the adaptive
* subspace model.
*/
static void make_space(const char *d_out[], const char *v_out[],
std::map<const char *, pt> *d3_depth_pt,
std::map<const char *, pt> *d3_output_pt) {
ui::get()->d3_total_spaces(0);
/*
* Variable indicating whether low-resolution filler space
* is desired to avoid aliased gaps in surfaces.
*/
int use_filler = d3_depth_pt->size() != 0
|| d3_output_pt->size() != 0
|| output_decimation_preferred > 0
|| input_decimation_lower > 0
|| !focus::is_trivial()
|| !strcmp(pairwise_comparisons, "all");
std::vector<pt> pt_outputs = make_pt_list(d_out, v_out, d3_depth_pt, d3_output_pt);
/*
* Initialize root space.
*/
space::init_root();
/*
* Special handling for experimental option 'subspace_traverse'.
*/
if (subspace_traverse) {
/*
* Subdivide space to resolve intensity matches between pairs
* of frames.
*/
for (unsigned int f1 = 0; f1 < d2::image_rw::count(); f1++) {
if (d3_depth_pt->size() == 0
&& d3_output_pt->size() == 0
&& d_out[f1] == NULL
&& v_out[f1] == NULL)
continue;
if (tc_multiplier == 0)
al->open(f1);
for (unsigned int f2 = 0; f2 < d2::image_rw::count(); f2++) {
if (f1 == f2)
continue;
if (tc_multiplier == 0)
al->open(f2);
candidates *c = new candidates(f1);
find_candidates(f1, f2, c, point::neginf(), point::posinf(), pt_outputs);
c->generate_subspaces();
if (tc_multiplier == 0)
al->close(f2);
}
if (tc_multiplier == 0)
al->close(f1);
}
return;
}
/*
* Subdivide space to resolve intensity matches between pairs
* of frames.
*/
for (unsigned int f1 = 0; f1 < d2::image_rw::count(); f1++)
for (unsigned int f2 = 0; f2 < d2::image_rw::count(); f2++) {
if (f1 == f2)
continue;
if (!d_out[f1] && !v_out[f1] && !d3_depth_pt->size()
&& !d3_output_pt->size() && strcmp(pairwise_comparisons, "all"))
continue;
if (tc_multiplier == 0) {
al->open(f1);
al->open(f2);
}
/*
* Iterate over all points in the primary frame.
*/
ale_pos pdu_scale = pow(2, primary_decimation_upper);
for (unsigned int i = 0; i < al->get(f1)->get_image(primary_decimation_upper)->height(); i++)
for (unsigned int j = 0; j < al->get(f1)->get_image(primary_decimation_upper)->width(); j++) {
if (d2::render::is_excluded_f(d2::point(i, j) * pdu_scale, f1))
continue;
ui::get()->d3_subdivision_status(f1, f2, i, j);
total_pixels++;
/*
* Generate a map from scores to 3D points for
* various depths in f1.
*/
score_map _sm = p2f_score_map(f1, f2, i, j);
/*
* Analyze space in a manner dependent on the score map.
*/
analyze_space_from_map(d_out, v_out, d3_depth_pt, d3_output_pt,
f1, f2, i, j, _sm, use_filler);
}
/*
* This ordering may encourage image f1 to be cached.
*/
if (tc_multiplier == 0) {
al->close(f2);
al->close(f1);
}
}
}
/*
* Update spatial information structures.
*
* XXX: the name of this function is horribly misleading. There isn't
* even a 'search depth' any longer, since there is no longer any
* bounded DFS occurring.
*/
static void reduce_cost_to_search_depth(d2::exposure *exp_out, int inc_bit) {
/*
* Subspace model
*/
ui::get()->set_steps(ou_iterations);
for (unsigned int i = 0; i < ou_iterations; i++) {
ui::get()->set_steps_completed(i);
spatial_info_update();
}
}
#if 0
/*
* Describe a scene to a renderer
*/
static void describe(render *r) {
}
#endif
};
#endif