ale/d2/render/psf/scalar_mult.h
2022-07-30 14:46:04 -03:00

102 lines
2.9 KiB
C++

// Copyright 2003, 2004 David Hilvert <dhilvert@auricle.dyndns.org>,
// <dhilvert@ugcs.caltech.edu>
/* This file is part of the Anti-Lamenessing Engine.
The Anti-Lamenessing Engine is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
The Anti-Lamenessing Engine is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the Anti-Lamenessing Engine; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef __psf_scalar_mult_h__
#define __psf_scalar_mult_h__
#include "../../point.h"
#include "psf.h"
/*
* Point-spread function module.
*
* This module implements the scalar_mult (f1 * f2) of point-spread functions f1 and
* f2.
*/
class scalar_mult : public psf {
ale_pos _radius;
psf *f;
ale_real scalar;
ale_real _min_i, _max_i, _min_j, _max_j;
public:
/*
* The following four functions indicate filter boundaries. Filter
* support may include everything up to and including the boundaries
* specified here.
*/
ale_real min_i() const { return _min_i; }
ale_real max_i() const { return _max_i; }
ale_real min_j() const { return _min_j; }
ale_real max_j() const { return _max_j; }
/*
* Get the number of varieties supported by this PSF. These usually
* correspond to different points in the sensor array.
*/
virtual unsigned int varieties() {
return f->varieties();
}
/*
* Select the variety appropriate for a given position in the sensor
* array.
*/
virtual unsigned int select(unsigned int i, unsigned int j) {
return f->select(i, j);
}
/*
* Response function
*
* Get the response to the rectangle bounded by (top, bot, lef, rig).
* This function must correctly handle points which fall outside of the
* filter support. The variety of the responding pixel is provided, in
* case response is not uniform for all pixels (e.g. some sensor arrays
* stagger red, green, and blue sensors).
*/
psf_result operator()(ale_real top, ale_real bot, ale_real lef, ale_real rig,
unsigned int variety) const {
psf_result result;
psf_result r;
r = (*f)(top, bot, lef, rig, variety);
for (int k1 = 0; k1 < 3; k1++)
for (int k2 = 0; k2 < 3; k2++)
result.set_matrix(k1, k2, scalar * r.get_matrix(k1, k2));
return result;
}
scalar_mult(ale_real s, psf *f) {
this->scalar = s;
this->f = f;
_min_i = f->min_i();
_min_j = f->min_j();
_max_i = f->max_i();
_max_j = f->max_j();
}
};
#endif