ale/d2/exposure/exposure_default.h
2022-07-30 14:46:04 -03:00

161 lines
3.9 KiB
C++

// Copyright 2004 David Hilvert <dhilvert@auricle.dyndns.org>,
// <dhilvert@ugcs.caltech.edu>
/* This file is part of the Anti-Lamenessing Engine.
The Anti-Lamenessing Engine is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
The Anti-Lamenessing Engine is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the Anti-Lamenessing Engine; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* exposure_default.h: Default exposure properties.
*/
#ifndef __exposure_default_h__
#define __exposure_default_h__
/*
* The default exposure is modeled after the simple power transfer function
* described in
*
* http://netpbm.sourceforge.net/doc/pnmgamma.html
*
* Note: optimizations in d2/image_rw.h depend on the details of this function.
*/
class exposure_default : public exposure {
public:
pixel linearize(pixel input) const {
#if 0
/*
* Calling pow() may be expensive on some platforms (e.g.,
* those lacking hardware support for floating point).
*/
return ppow(input, 1/0.45) * get_multiplier();
#else
const int table_size = 1024;
const int table_bits = 10;
const int interp_bits = 6;
static int table_is_built = 0;
static ale_real table[table_size];
pixel result;
if (!table_is_built) {
for (int i = 0; i < table_size; i++) {
table[i] = pow((float) i / (float) (table_size - 1), 1/0.45);
}
table_is_built = 1;
}
for (int k = 0; k < 3; k++) {
/*
* Clamp.
*/
if (input[k] >= 1) {
result[k] = 1;
continue;
} else if (input[k] <= 0) {
result[k] = 0;
continue;
} else if (isnan(input[k])) {
result[k] = input[k];
continue;
}
int index1 = ale_real_to_int(input[k], 65535);
int index2 = index1 >> (16 - table_bits);
int index3 = (index1 >> (16 - table_bits - interp_bits))
& ((1 << interp_bits) - 1);
if (index2 >= table_size - 1) {
result[k] = 1;
continue;
}
ale_real frac = ale_real_from_int((index3 << (16 - interp_bits)), 65535);
result[k] = (1 - frac) * table[index2] + frac * table[index2 + 1];
}
return result * get_multiplier();
#endif
}
pixel unlinearize(pixel input) const {
#if 0
/*
* Calling pow() may be expensive on some platforms (e.g.,
* those lacking hardware support for floating point).
*/
return ppow(input / get_multiplier(), 0.45);
#else
input /= get_multiplier();
const int table_size = 1024;
const int table_bits = 10;
const int interp_bits = 6;
static int table_is_built = 0;
static ale_real table[table_size];
pixel result;
if (!table_is_built) {
for (int i = 0; i < table_size; i++) {
table[i] = pow((float) i / (float) (table_size - 1), 0.45);
}
table_is_built = 1;
}
for (int k = 0; k < 3; k++) {
/*
* Clamp.
*/
if (input[k] >= 1) {
result[k] = 1;
continue;
} else if (input[k] <= 0) {
result[k] = 0;
continue;
} else if (isnan(input[k])) {
result[k] = input[k];
continue;
}
int index1 = ale_real_to_int(input[k], 65535);
int index2 = index1 >> (16 - table_bits);
int index3 = (index1 >> (16 - table_bits - interp_bits))
& ((1 << interp_bits) - 1);
if (index2 >= table_size - 1) {
result[k] = 1;
continue;
}
ale_real frac = ale_real_from_int((index3 << (16 - interp_bits)), 65535);
result[k] = (1 - frac) * table[index2] + frac * table[index2 + 1];
}
return result;
#endif
}
};
#endif