ale/d3/point.h
2022-07-30 14:46:04 -03:00

296 lines
5.3 KiB
C++

// Copyright 2002, 2004 David Hilvert <dhilvert@auricle.dyndns.org>,
// <dhilvert@ugcs.caltech.edu>
/* This file is part of the Anti-Lamenessing Engine.
The Anti-Lamenessing Engine is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
The Anti-Lamenessing Engine is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the Anti-Lamenessing Engine; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef __d3point_h__
#define __d3point_h__
/*
* Structure to describe a point in three dimensions.
*/
class point {
private:
ale_pos x[3];
public:
point() {
x[0] = 0;
x[1] = 0;
x[2] = 0;
}
point(ale_pos x0, ale_pos x1, ale_pos x2) {
x[0] = x0;
x[1] = x1;
x[2] = x2;
}
point(const point &p) {
x[0] = p[0];
x[1] = p[1];
x[2] = p[2];
}
static point unit(int dimension) {
if (dimension == 0)
return point(1, 0, 0);
if (dimension == 1)
return point(0, 1, 0);
if (dimension == 2)
return point(0, 0, 1);
assert(0);
}
static point undefined() {
double a = 0;
point p(0, 0, 0);
return p / a;
}
static point posinf() {
double a = +1;
double z = +0;
a = a / z;
assert (isinf(a) && a > 0);
return point(a, a, a);
}
static point neginf() {
point n = -posinf();
assert (isinf(n[0]) && n[0] < 0);
return n;
}
void accumulate_max(point p) {
for (int d = 0; d < 3; d++)
if (p[d] > x[d])
x[d] = p[d];
}
void accumulate_min(point p) {
for (int d = 0; d < 3; d++)
if (p[d] < x[d])
x[d] = p[d];
}
int defined() const {
return (!isnan(x[0])
&& !isnan(x[1])
&& !isnan(x[2]));
}
int finite() const {
return (::finite(x[0])
&& ::finite(x[1])
&& ::finite(x[2]));
}
static int defined(const point &p) {
return p.defined();
}
/*
* Z-values of zero are almost never the right thing to do ...
*/
point(d2::point p, ale_pos z = 0) {
x[0] = p[0];
x[1] = p[1];
x[2] = z;
}
const ale_pos &operator[](int i) const {
assert (i >= 0);
assert (i < 3);
return x[i];
}
ale_pos &operator[](int i) {
assert (i >= 0);
assert (i < 3);
return x[i];
}
d2::point xy() const {
d2::point result;
result[0] = x[0];
result[1] = x[1];
return result;
}
point operator+(point p) const {
return point(x[0] + p[0], x[1] + p[1], x[2] + p[2]);
}
point operator-(point p) const {
return point(x[0] - p[0], x[1] - p[1], x[2] - p[2]);
}
point operator-() const {
return point(-x[0], -x[1], -x[2]);
}
point operator/(ale_pos r) const {
return point(x[0] / r, x[1] / r, x[2] / r);
}
point operator /=(ale_pos r) {
x[0] /= r;
x[1] /= r;
x[2] /= r;
return *this;
}
point operator *=(ale_pos r) {
x[0] *= r;
x[1] *= r;
x[2] *= r;
return *this;
}
point operator +=(point p) {
x[0] += p[0];
x[1] += p[1];
x[2] += p[2];
return *this;
}
point operator -=(point p) {
x[0] -= p[0];
x[1] -= p[1];
x[2] -= p[2];
return *this;
}
int operator !=(point p) {
return (x[0] != p[0]
|| x[1] != p[1]
|| x[2] != p[2]);
}
point mult(ale_pos d) const {
return point(x[0] * d, x[1] * d, x[2] * d);
}
point operator*(point p) const {
return point(x[0] * p[0], x[1] * p[1], x[2] * p[2]);
}
ale_pos normsq() const {
return x[0] * x[0] + x[1] * x[1] + x[2] * x[2];
}
ale_pos norm() const {
return sqrt(normsq());
}
point normalize() const {
return operator/(norm());
}
ale_pos lengthtosq(point p) const {
point diff = operator-(p);
return diff.normsq();
}
ale_pos lengthto(point p) const {
return sqrt(lengthtosq(p));
}
ale_pos anglebetw(point p, point q) {
/*
* by the law of cosines, the cosine is equal to:
*
* (lengthtosq(p) + lengthtosq(q) - p.lengthtosq(q))
* / (2 * lengthto(p) * lengthto(q))
*/
ale_pos to_p = lengthtosq(p);
ale_pos to_q = lengthtosq(q);
ale_pos cos_of = (double) (to_p + to_q - p.lengthtosq(q))
/ (double) (2 * sqrt(to_p) * sqrt(to_q));
/*
* XXX: is the fabs() required?
*/
return fabs(acos(cos_of));
}
/*
* Determine the cross product
*/
point xproduct(point p, point q) {
point pp = p;
point qq = q;
pp -= *this;
qq -= *this;
return point(pp[1] * qq[2] - pp[2] * qq[1],
pp[2] * qq[0] - pp[0] * qq[2],
pp[0] * qq[1] - pp[1] * qq[0]);
}
/*
* Determine the dot product
*/
ale_pos dproduct(const point &p) {
return x[0] * p[0] + x[1] * p[1] + x[2] * p[2];
}
/*
* Determine whether the point is inside a given volume
*/
int inside(const point &min, const point &max) {
for (int d = 0; d < 3; d++) {
if (min[d] > x[d])
return 0;
if (max[d] < x[d])
return 0;
}
}
};
inline point operator*(const point &p, double d) {
return p.mult(d);
}
inline point operator*(double d, const point &p) {
return p.mult(d);
}
#endif