ale/d2/render/psf/rasterizer.h
2022-07-30 14:46:04 -03:00

193 lines
5.5 KiB
C++

// Copyright 2003 David Hilvert <dhilvert@auricle.dyndns.org>,
// <dhilvert@ugcs.caltech.edu>
/* This file is part of the Anti-Lamenessing Engine.
The Anti-Lamenessing Engine is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
The Anti-Lamenessing Engine is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with the Anti-Lamenessing Engine; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef __psf_rasterize_h__
#define __psf_rasterize_h__
#include "../../point.h"
#include "raster.h"
#include "psf.h"
/*
* Point-spread function rasterizer.
*
* These operations rasterize a PSF to a multiple of the resolution of the
* rendering grid for a given frame.
*/
class rasterizer : public raster {
psf *input;
public:
unsigned int varieties() const {
return input->varieties();
}
unsigned int select(unsigned int i, unsigned int j) const {
return input->select(i, j);
}
rasterizer (psf *input, transformation t) {
this->input = input;
_height = -input->min_i();
if (input->max_i() > _height)
_height = input->max_i();
_width = -input->min_j();
if (input->max_j() > _width)
_width = input->max_j();
/*
* Approximate the desired resolution.
*
* Assume that maximum resolution is reached at (at least) one
* of the corners of the image. (This should be true for
* projective, Euclidean, and translational transformations,
* but it would be worthwhile to check/prove this for the
* projective case at some point, since it's a bit less
* obvious.)
*/
point min_diff;
/*
* XXX: this loop breaks when height <= 1 or width <= 1.
*/
for (unsigned int i = 0; i < t.unscaled_height(); i += (t.unscaled_height() - 1))
for (unsigned int j = 0; j < t.unscaled_width(); j += (t.unscaled_width() - 1)) {
point corner = point(i, j);
point delta1 = corner - t.scaled_inverse_transform(t.transform_scaled(corner) + point(1, 0));
point delta2 = corner - t.scaled_inverse_transform(t.transform_scaled(corner) + point(0, 1));
for (int index = 0; index < 2; index++) {
ale_pos d1 = fabs(delta1[index]);
ale_pos d2 = fabs(delta2[index]);
/*
* Take the largest change in each direction.
*/
ale_pos delta = (d1 > d2) ? d1 : d2;
if ((i == 0 && j == 0) || delta < min_diff[index])
min_diff[index] = delta;
}
}
ale_real resolution_multiplier = 20; /* Arbitrary */
_filter_dim_i = (int) ceil((ale_real) 2 * _height * resolution_multiplier / (ale_real) min_diff[0]);
_filter_dim_j = (int) ceil((ale_real) 2 * _width * resolution_multiplier / (ale_real) min_diff[1]);
/*
* Ensure that the array has an odd number of elements in each
* direction. This allows us to move the center to the right
* place when using FFTW.
*/
if (_filter_dim_i % 2 == 0)
_filter_dim_i++;
if (_filter_dim_j % 2 == 0)
_filter_dim_j++;
/*
* Determine the number of arrays to create.
*/
num_arrays = input->varieties();
/*
* Create arrays
*/
response_arrays = (ale_real **)malloc(num_arrays * sizeof(ale_real *));
if (!response_arrays) {
fprintf(stderr, "Could not allocate in rasterizer.\n");
exit(1);
}
ale_real stepsize_i = (2 * _height) / _filter_dim_i;
ale_real stepsize_j = (2 * _width) / _filter_dim_j;
ale_real divisor = stepsize_i * stepsize_j;
for (unsigned int n = 0; n < num_arrays; n++) {
response_arrays[n] = (ale_real *)malloc(_filter_dim_i * _filter_dim_j * 3
* sizeof(ale_real));
if (!response_arrays[n]) {
fprintf(stderr, "Could not allocate in rasterizer.\n");
exit(1);
}
for (unsigned int i = 0; i < _filter_dim_i; i++)
for (unsigned int j = 0; j < _filter_dim_j; j++) {
psf_result r
= (*input)(-_height + stepsize_i * (ale_real) i,
-_height + stepsize_i * (ale_real) (i + 1),
-_width + stepsize_j * (ale_real) j,
-_width + stepsize_j * (ale_real) (j + 1), n);
for (unsigned int k = 0; k < 3; k++) {
response_arrays[n][i * _filter_dim_j * 3 + j * 3 + k]
= r.matrix(k, k) / divisor;
}
}
}
#if 0
avg_response = (ale_real *)malloc(_filter_dim_i * _filter_dim_j * 3
* sizeof(ale_real));
if (!avg_response) {
fprintf(stderr, "Could not allocate in rasterizer.\n");
exit(1);
}
for (unsigned int i = 0; i < _filter_dim_i; i++)
for (unsigned int j = 0; j < _filter_dim_j; j++) {
psf::psf_result r
= (*input)(-_height + stepsize_i * i,
-_height + stepsize_i * (i + 1),
-_width + stepsize_j * j,
-_width + stepsize_j * (j + 1));
for (unsigned int k = 0; k < 3; k++)
avg_response[i * _filter_dim_j * 3 + j * 3 + k]
= r.matrix(k, k) / divisor;
}
#endif
compute_integrals();
// fprintf(stderr, "(w=%f h=%f we=%d he=%d [", _width, _height, _filter_dim_j, _filter_dim_i);
// for (unsigned int i = 0; i < _filter_dim_i; i++)
// for (unsigned int j = 0; j < _filter_dim_j; j++)
// fprintf(stderr, "%f ", response_arrays[0][i * _filter_dim_j * 3 + j * 3 + 0]);
// fprintf(stderr, "])");
}
};
#endif